Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fixes typo on line 39 in spatial-complexity.md #46

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion lessons/spatial-complexity.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,6 @@ I will say O(n²) in spatial complexity is pretty rare and a big red flag.

As before, this is just a tool to make sure your design fits your needs. One isn't necessarily better than the other. And very frequently you need to make the trade off of computational complexity vs spatial. Some algoriths eat a lot of memory but go fast and there are lots that eat zero memory but go slow. It just depends on what your needs are.

Here's an example: let's say you're writing code that's going to be run a PlayStation 3 and it needs to sort 1000 TV shows according to what show you think the customer is going to want to see. PS3s have a decent processor but very little memory available to apps. In this case, we'd want to trade off in favor of spatial complexity and trade off against computational complexity: the processor can do more work so we can save memory.
Here's an example: let's say you're writing code that's going to be run on a PlayStation 3 and it needs to sort 1000 TV shows according to what show you think the customer is going to want to see. PS3s have a decent processor but very little memory available to apps. In this case, we'd want to trade off in favor of spatial complexity and trade off against computational complexity: the processor can do more work so we can save memory.

Okay, now same problem but we have 1,000,000 videos and a big, beefy server in the cloud to do the work for us. In this case we're not resource constrained by either memory or compute so we can feel free to trade off in favor of computational since we want to respond to the user as soon as we can.