-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: confidence level and central limit theory
- Loading branch information
1 parent
c395e4d
commit 6592796
Showing
2 changed files
with
999 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from pandas import read_csv\n", | ||
"from sklearn.utils import resample\n", | ||
"from sklearn.tree import DecisionTreeClassifier\n", | ||
"from sklearn.metrics import accuracy_score\n", | ||
"from matplotlib import pyplot\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"# load dataset\n", | ||
"data = read_csv('pima-indians-diabetes.data.csv')\n", | ||
"values = data.values" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0.6961206896551724\n", | ||
"0.6924731182795699\n", | ||
"0.673202614379085\n", | ||
"0.7251082251082251\n", | ||
"0.6827133479212254\n", | ||
"0.70020964360587\n", | ||
"0.6953781512605042\n", | ||
"0.6730769230769231\n", | ||
"0.6941964285714286\n", | ||
"0.7154989384288747\n", | ||
"0.6924731182795699\n", | ||
"0.709051724137931\n", | ||
"0.7245119305856833\n", | ||
"0.6478260869565218\n", | ||
"0.7172995780590717\n", | ||
"0.6631130063965884\n", | ||
"0.7188841201716738\n", | ||
"0.6949891067538126\n", | ||
"0.6995708154506438\n", | ||
"0.684322033898305\n", | ||
"0.665938864628821\n", | ||
"0.632258064516129\n", | ||
"0.6739130434782609\n", | ||
"0.6666666666666666\n", | ||
"0.6709129511677282\n", | ||
"0.7083333333333334\n", | ||
"0.6938325991189427\n", | ||
"0.6825053995680346\n", | ||
"0.6857749469214437\n", | ||
"0.7270742358078602\n", | ||
"0.7307692307692307\n", | ||
"0.6723768736616702\n", | ||
"0.7118279569892473\n", | ||
"0.670995670995671\n", | ||
"0.6717391304347826\n", | ||
"0.707983193277311\n", | ||
"0.6946236559139785\n", | ||
"0.6622807017543859\n", | ||
"0.6826722338204593\n", | ||
"0.7217573221757322\n", | ||
"0.6630434782608695\n", | ||
"0.7062634989200864\n", | ||
"0.7070484581497798\n", | ||
"0.6991525423728814\n", | ||
"0.693446088794926\n", | ||
"0.6848739495798319\n", | ||
"0.7323340471092077\n", | ||
"0.6826086956521739\n", | ||
"0.6702819956616052\n", | ||
"0.7086956521739131\n", | ||
"0.6274089935760171\n", | ||
"0.6909871244635193\n", | ||
"0.6762114537444934\n", | ||
"0.7366167023554604\n", | ||
"0.6898047722342733\n", | ||
"0.7130434782608696\n", | ||
"0.7037037037037037\n", | ||
"0.7263157894736842\n", | ||
"0.6863157894736842\n", | ||
"0.6666666666666666\n", | ||
"0.7239130434782609\n", | ||
"0.7043478260869566\n", | ||
"0.7015250544662309\n", | ||
"0.69593147751606\n", | ||
"0.6902654867256637\n", | ||
"0.6861471861471862\n", | ||
"0.7456521739130435\n", | ||
"0.6876355748373102\n", | ||
"0.6985138004246284\n", | ||
"0.6751592356687898\n", | ||
"0.7198275862068966\n", | ||
"0.6652719665271967\n", | ||
"0.7130242825607064\n", | ||
"0.6903225806451613\n", | ||
"0.6877729257641921\n", | ||
"0.6978260869565217\n", | ||
"0.6501079913606912\n", | ||
"0.6914893617021277\n", | ||
"0.6811279826464208\n", | ||
"0.6810344827586207\n", | ||
"0.6780383795309168\n", | ||
"0.6872340425531915\n", | ||
"0.6997885835095138\n", | ||
"0.7029914529914529\n", | ||
"0.6306695464362851\n", | ||
"0.7006507592190889\n", | ||
"0.6616379310344828\n", | ||
"0.6984815618221258\n", | ||
"0.6943231441048034\n", | ||
"0.7200854700854701\n", | ||
"0.7033898305084746\n", | ||
"0.6808510638297872\n", | ||
"0.6813417190775681\n", | ||
"0.673773987206823\n", | ||
"0.6736842105263158\n", | ||
"0.6545842217484008\n", | ||
"0.6997840172786177\n", | ||
"0.6494623655913978\n", | ||
"0.7066381156316917\n", | ||
"0.6631130063965884\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# configure bootstrap\n", | ||
"n_iterations = 100 # Number of bootstrap samples to create\n", | ||
"n_size = int(len(data) * 0.50) # picking only 50 % of the given data in every bootstrap sample\n", | ||
"\n", | ||
"# run bootstrap\n", | ||
"stats = list()\n", | ||
"for i in range(n_iterations):\n", | ||
" # prepare train and test sets\n", | ||
" train = resample(values, n_samples=n_size) # Sampling with replacement \n", | ||
" test = np.array([x for x in values if x.tolist() not in train.tolist()]) # picking rest of the data not considered in sample\n", | ||
" # fit model\n", | ||
" model = DecisionTreeClassifier()\n", | ||
" model.fit(train[:,:-1], train[:,-1])\n", | ||
" # evaluate model\n", | ||
" predictions = model.predict(test[:,:-1])\n", | ||
" score = accuracy_score(test[:,-1], predictions) # caution, overall accuracy score can mislead when classes are imbalanced\n", | ||
" print(score)\n", | ||
" stats.append(score)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASOUlEQVR4nO3df6xkZ33f8fcn/pEqQMqavTjGP1iaGisG1YZcLVALZEJt1obgNELgVZsuLcnmh6mClEZ12iqu4B+3EUFNjGJt8BYnAkNLMHFkg711iAyRTXxtbGyzwBpnUy9reS8s2FhESpZ8+8ecVS/jmb1z58y9s/v4/ZJGc87zPOc8z6PRfu7ZM3POSVUhSWrXj8x7AJKk9WXQS1LjDHpJapxBL0mNM+glqXEnz3sAo2zevLm2bNky72FI0gnjvvvu+1ZVLYyqOy6DfsuWLSwtLc17GJJ0wkjyN+PqPHUjSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGrdq0Cc5O8nnkuxN8kiSX+/KT0uyJ8m+7n3TmO13dG32Jdkx6wlIko5tkiP6I8BvVNVPAa8FrkpyPnA1cGdVnQvc2a3/kCSnAdcArwG2AteM+4MgSVofqwZ9VT1RVfd3y98D9gJnAlcAN3bNbgR+bsTmbwb2VNXhqvoOsAfYNouBS5Ims6YrY5NsAV4FfBE4vaqegMEfgyQvHrHJmcDjK9YPdGWj9r0T2AlwzjnnrGVY0obZcvWt8x7Chtt/7VvmPQT1NPGXsUmeD/wJ8N6qenrSzUaUjXykVVXtqqrFqlpcWBh5uwZJ0hQmCvokpzAI+Y9W1ae64ieTnNHVnwEcGrHpAeDsFetnAQenH64kaa0m+dVNgBuAvVX1uyuqbgGO/opmB/CnIza/Hbg0yabuS9hLuzJJ0gaZ5Ij+IuAXgJ9J8kD3uhy4FrgkyT7gkm6dJItJPgxQVYeB9wP3dq/3dWWSpA2y6pexVfUFRp9rB3jTiPZLwC+uWN8N7J52gJKkfrwyVpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuFUfPJJkN/BW4FBVvbIr+wRwXtfkhcB3q+rCEdvuB74H/AA4UlWLMxq3JGlCqwY98BHgOuCPjhZU1TuPLif5APDUMbZ/Y1V9a9oBSpL6meRRgncl2TKqrntw+DuAn5ntsCRJs9L3HP3rgSerat+Y+gLuSHJfkp09+5IkTWGSUzfHsh246Rj1F1XVwSQvBvYk+WpV3TWqYfeHYCfAOeec03NYkqSjpj6iT3Iy8PPAJ8a1qaqD3fsh4GZg6zHa7qqqxapaXFhYmHZYkqQhfU7d/Avgq1V1YFRlkuclecHRZeBS4OEe/UmSprBq0Ce5CbgbOC/JgSTv7qquZOi0TZKXJLmtWz0d+EKSB4G/Am6tqs/ObuiSpElM8qub7WPK3zWi7CBwebf8GHBBz/FJknrq+2WsnsO2XH3r3Pref+1b5ta3dKLxFgiS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4r4zVCWmeV+VKJxqP6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjJnmU4O4kh5I8vKLsvyb5ZpIHutflY7bdluRrSR5NcvUsBy5JmswkR/QfAbaNKP9gVV3YvW4brkxyEvAh4DLgfGB7kvP7DFaStHarBn1V3QUcnmLfW4FHq+qxqvo74OPAFVPsR5LUQ59z9O9J8uXu1M6mEfVnAo+vWD/QlY2UZGeSpSRLy8vLPYYlSVpp2qD/A+AngQuBJ4APjGiTEWU1bodVtauqFqtqcWFhYcphSZKGTRX0VfVkVf2gqv4B+EMGp2mGHQDOXrF+FnBwmv4kSdObKuiTnLFi9V8CD49odi9wbpKXJTkVuBK4ZZr+JEnTW/XulUluAi4GNic5AFwDXJzkQganYvYDv9y1fQnw4aq6vKqOJHkPcDtwErC7qh5Zl1lIksZaNeiravuI4hvGtD0IXL5i/TbgWT+9lCRtHK+MlaTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMatGvRJdic5lOThFWW/k+SrSb6c5OYkLxyz7f4kDyV5IMnSLAcuSZrMJEf0HwG2DZXtAV5ZVf8M+DrwW8fY/o1VdWFVLU43RElSH6sGfVXdBRweKrujqo50q/cAZ63D2CRJMzCLc/T/DvjMmLoC7khyX5Kdx9pJkp1JlpIsLS8vz2BYkiToGfRJ/jNwBPjomCYXVdWrgcuAq5K8Ydy+qmpXVS1W1eLCwkKfYUmSVpg66JPsAN4K/KuqqlFtqupg934IuBnYOm1/kqTpTBX0SbYB/xF4W1V9f0yb5yV5wdFl4FLg4VFtJUnrZ5KfV94E3A2cl+RAkncD1wEvAPZ0P528vmv7kiS3dZueDnwhyYPAXwG3VtVn12UWkqSxTl6tQVVtH1F8w5i2B4HLu+XHgAt6jU6S1JtXxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjJgr6JLuTHEry8Iqy05LsSbKve980ZtsdXZt93QPFJUkbaNIj+o8A24bKrgburKpzgTu79R+S5DTgGuA1wFbgmnF/ECRJ62OioK+qu4DDQ8VXADd2yzcCPzdi0zcDe6rqcFV9B9jDs/9gSJLWUZ9z9KdX1RMA3fuLR7Q5E3h8xfqBruxZkuxMspRkaXl5ucewJEkrrfeXsRlRVqMaVtWuqlqsqsWFhYV1HpYkPXf0Cfonk5wB0L0fGtHmAHD2ivWzgIM9+pQkrVGfoL8FOPormh3An45ocztwaZJN3Zewl3ZlkqQNMunPK28C7gbOS3IgybuBa4FLkuwDLunWSbKY5MMAVXUYeD9wb/d6X1cmSdogJ0/SqKq2j6l604i2S8AvrljfDeyeanSSpN68MlaSGmfQS1LjDHpJapxBL0mNM+glqXET/epG0nPXlqtvnUu/+699y1z6bZFH9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuOmDvok5yV5YMXr6STvHWpzcZKnVrT57f5DliStxdQ3NauqrwEXAiQ5CfgmcPOIpp+vqrdO248kqZ9Znbp5E/CNqvqbGe1PkjQjswr6K4GbxtS9LsmDST6T5BXjdpBkZ5KlJEvLy8szGpYkqXfQJzkVeBvwv0dU3w+8tKouAH4f+PS4/VTVrqparKrFhYWFvsOSJHVmcUR/GXB/VT05XFFVT1fVM93ybcApSTbPoE9J0oRmEfTbGXPaJslPJEm3vLXr79sz6FOSNKFejxJM8mPAJcAvryj7FYCquh54O/CrSY4AfwtcWVXVp09J0tr0Cvqq+j7woqGy61csXwdc16cPSc9N83pWLbT3vFqvjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TG9Q76JPuTPJTkgSRLI+qT5PeSPJrky0le3bdPSdLkej1KcIU3VtW3xtRdBpzbvV4D/EH3LknaABtx6uYK4I9q4B7ghUnO2IB+JUnMJugLuCPJfUl2jqg/E3h8xfqBruyHJNmZZCnJ0vLy8gyGJUmC2QT9RVX1aganaK5K8oah+ozYpp5VULWrqharanFhYWEGw5IkwQyCvqoOdu+HgJuBrUNNDgBnr1g/CzjYt19J0mR6BX2S5yV5wdFl4FLg4aFmtwD/pvv1zWuBp6rqiT79SpIm1/dXN6cDNyc5uq+PVdVnk/wKQFVdD9wGXA48Cnwf+Lc9+5QkrUGvoK+qx4ALRpRfv2K5gKv69CNJmp5XxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktS4vg8eOe5sufrWeQ9Bko4rHtFLUuOmDvokZyf5XJK9SR5J8usj2lyc5KkkD3Sv3+43XEnSWvU5dXME+I2qur97QPh9SfZU1VeG2n2+qt7aox9JUg9TH9FX1RNVdX+3/D1gL3DmrAYmSZqNmZyjT7IFeBXwxRHVr0vyYJLPJHnFMfaxM8lSkqXl5eVZDEuSxAyCPsnzgT8B3ltVTw9V3w+8tKouAH4f+PS4/VTVrqparKrFhYWFvsOSJHV6BX2SUxiE/Eer6lPD9VX1dFU90y3fBpySZHOfPiVJa9PnVzcBbgD2VtXvjmnzE107kmzt+vv2tH1Kktauz69uLgJ+AXgoyQNd2X8CzgGoquuBtwO/muQI8LfAlVVVPfqUJK3R1EFfVV8Askqb64Drpu1DkuZhXlfY77/2LeuyX6+MlaTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMb1fTj4tiRfS/JokqtH1P9okk909V9MsqVPf5KktevzcPCTgA8BlwHnA9uTnD/U7N3Ad6rqnwIfBP7btP1JkqbT54h+K/BoVT1WVX8HfBy4YqjNFcCN3fIngTclOeZzZiVJszX1w8GBM4HHV6wfAF4zrk1VHUnyFPAi4FvDO0uyE9jZrT6T5Gs9xjZPmxkxvxNYS/NpaS7Q1nxamgtMOZ/0O+fx0nEVfYJ+1JF5TdFmUFi1C9jVYzzHhSRLVbU473HMSkvzaWku0NZ8WpoLHH/z6XPq5gBw9or1s4CD49okORn4x8DhHn1KktaoT9DfC5yb5GVJTgWuBG4ZanMLsKNbfjvw51U18ohekrQ+pj51051zfw9wO3ASsLuqHknyPmCpqm4BbgD+OMmjDI7kr5zFoI9zJ/zppyEtzaeluUBb82lpLnCczSceYEtS27wyVpIaZ9BLUuMM+jVY7ZYPXZt3JPlKkkeSfGyo7seTfDPJdRsz4vH6zCXJOUnuSLK3q9+yUeMep+d8/ntXtjfJ7837or4Jbi3ywSQPdK+vJ/nuirodSfZ1rx3D287DtPNJcmGSu7vP5stJ3rnxo3/WWKf+bLr6+WRAVfma4MXgC+dvAP8EOBV4EDh/qM25wJeATd36i4fq/wfwMeC6E3kuwF8Al3TLzwd+7ESdD/DPgb/s9nEScDdw8fE8l6H2/57BDyEATgMe6943dcubjvfP5hjzeTlwbrf8EuAJ4IUn4lxWlM0lAzyin9wkt3z4JeBDVfUdgKo6dLQiyU8DpwN3bNB4j2XquXT3Mzq5qvZ05c9U1fc3bugj9flsCvhHDP7h/ihwCvDkhox6tEnmstJ24KZu+c3Anqo63M1zD7BtXUe7uqnnU1Vfr6p93fJB4BCwsM7jPZY+n81cM8Cgn9yoWz6cOdTm5cDLk/xlknuSbANI8iPAB4Df3JCRrm7quXTl303yqSRfSvI73Q3u5mnq+VTV3cDnGBwtPgHcXlV7N2DM40wyFwCSvBR4GfDna912A/WZz8q6rQz+GH9jHcY4qannMu8M6HMLhOeaSW7ncDKDUwQXM7hS+PNJXgn8a+C2qnr8OLmnW5+5nAy8HngV8H+BTwDvYnDNxLz0mc9m4Ke6MoA9Sd5QVXet01hXM/FtQxhcl/LJqvrBFNtulD7zGewgOQP4Y2BHVf3DjMe3Fn3m8mvMMQMM+slNesuHe6rq74G/7m7Mdi7wOuD1SX6NwTntU5M8U1UjvzTcAH3mcgD4UlU9BpDk08BrmW/Q95nPxV35MwBJPsNgPvMK+knmctSVwFVD2148tO1fzHBs0+gzH5L8OHAr8F+q6p51GeHk+sxlvhkwry82TrQXgz+KjzH479jRL2JeMdRmG3Bjt7yZwX/zXjTU5l3M/8vYqefC4AupB4GFru5/AledwPN5J/B/un2cAtwJ/OzxPJeu3XnAfrqLHruy04C/ZvBF7KZu+bTj/bM5xnxO7T6P985zDrOYy1D9hmeA5+gnVFVHgKO3fNgL/K/qbvmQ5G1ds9uBbyf5CoPzvr9ZVd+ez4jH6zOXGvxX9D8AdyZ5iMF/Z/9w42fx//X8bD7J4LzvQwz+4T5YVX+24ZPoTDgXGHzR9/HqkqPb9jDwfgb3oboXeF9XNjd95gO8A3gD8K4VP1m8cMMGP6TnXObKWyBIUuM8opekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXH/D7AfuYDfnAzJAAAAAElFTkSuQmCC\n", | ||
"text/plain": [ | ||
"<Figure size 432x288 with 1 Axes>" | ||
] | ||
}, | ||
"metadata": { | ||
"needs_background": "light" | ||
}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"95.0 confidence interval 64.0% and 73.2%\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# plot scores\n", | ||
"pyplot.hist(stats)\n", | ||
"pyplot.show()\n", | ||
"# confidence intervals\n", | ||
"alpha = 0.95 # for 95% confidence \n", | ||
"p = ((1.0-alpha)/2.0) * 100 # tail regions on right and left .25 on each side indicated by P value (border)\n", | ||
"lower = max(0.0, np.percentile(stats, p)) \n", | ||
"p = (alpha+((1.0-alpha)/2.0)) * 100\n", | ||
"upper = min(1.0, np.percentile(stats, p))\n", | ||
"print('%.1f confidence interval %.1f%% and %.1f%%' % (alpha*100, lower*100, upper*100))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Interesting here we can start to see the Central Limit Theorem" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.