A library to split and merge high-resolution 3D images. Currently supports nii format only.
- Numpy 1.12.1
- Nibabel
note: accepts split dimensions rather than number of splits
import imageutils as iu
img = iu.ImageUtils(filepath="/path/to/image.nii")
img.split(first_dim=770, second_dim=605, third_dim=700,
local_dir="/path/to/output_dir", filename_prefix="bigbrain")# mem = 12g
import imageutils as iu
img = iu.ImageUtils(filepath="/path/to/image.nii")
img.split_multiple_writes(Y_splits=5, Z_splits=5, X_splits=5,
out_dir="/path/to/output_dir", mem=12*1024**3,
filename_prefix="bigbrain", extension="nii")# mem = 12g
import imageutils as iu
img = iu.ImageUtils(filepath="/path/to/image.nii")
img.split_clustered_writes(Y_splits=5, Z_splits=5, X_splits=5,
out_dir="/path/to/output_dir", mem=12*1024**3,
filename_prefix="bigbrain", extension="nii")import imageutils as iu
import numpy as np
img = iu.ImageUtils(filepath="/path/to/img.nii", first_dim=3850,
second_dim=3025, third_dim=3500, dtype=np.uint16)
img.reconstruct_img("/path/to/legend", "clustered", mem=0)- cluster reads strategy
# mem=12g
import imageutils as iu
import numpy as np
img = iu.ImageUtils(filepath="/path/to/img.nii", first_dim=3850,
second_dim=3025, third_dim=3500, dtype=np.uint16)
img.reconstruct_img("/path/to/legend", "clustered", mem=12*1024**3)- multiple reads strategy
# mem=12g
import imageutils as iu
import numpy as np
img = iu.ImageUtils(filepath="/path/to/img.nii", first_dim=3850,
second_dim=3025, third_dim=3500, dtype=np.uint16)
img.reconstruct_img("/path/to/legend", "multiple", mem=12*1024**3)This project is licensed under the MIT License - see the LICENSE file for details