Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Forward Keyword-Arguments in Dispatch and Sampling #248

Merged
merged 3 commits into from
Dec 20, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 27 additions & 10 deletions bayesflow/approximators/continuous_approximator.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from bayesflow.adapters import Adapter
from bayesflow.networks import InferenceNetwork, SummaryNetwork
from bayesflow.types import Tensor
from bayesflow.utils import logging, split_arrays
from bayesflow.utils import filter_kwargs, logging, split_arrays
from .approximator import Approximator


Expand Down Expand Up @@ -141,7 +141,7 @@ def sample(
) -> dict[str, np.ndarray]:
conditions = self.adapter(conditions, strict=False, stage="inference", **kwargs)
conditions = keras.tree.map_structure(keras.ops.convert_to_tensor, conditions)
conditions = {"inference_variables": self._sample(num_samples=num_samples, **conditions)}
conditions = {"inference_variables": self._sample(num_samples=num_samples, **conditions, **kwargs)}
conditions = keras.tree.map_structure(keras.ops.convert_to_numpy, conditions)
conditions = self.adapter(conditions, inverse=True, strict=False, **kwargs)

Expand All @@ -154,6 +154,7 @@ def _sample(
num_samples: int,
inference_conditions: Tensor = None,
summary_variables: Tensor = None,
**kwargs,
) -> Tensor:
if self.summary_network is None:
if summary_variables is not None:
Expand All @@ -162,7 +163,9 @@ def _sample(
if summary_variables is None:
raise ValueError("Summary variables are required when a summary network is present.")

summary_outputs = self.summary_network(summary_variables)
summary_outputs = self.summary_network(
summary_variables, **filter_kwargs(kwargs, self.summary_network.call)
)

if inference_conditions is None:
inference_conditions = summary_outputs
Expand All @@ -180,18 +183,26 @@ def _sample(
else:
batch_shape = (num_samples,)

return self.inference_network.sample(batch_shape, conditions=inference_conditions)
return self.inference_network.sample(
batch_shape,
conditions=inference_conditions,
**filter_kwargs(kwargs, self.inference_network.sample),
)

def log_prob(self, data: dict[str, np.ndarray]) -> np.ndarray:
data = self.adapter(data, strict=False, stage="inference")
def log_prob(self, data: dict[str, np.ndarray], **kwargs) -> np.ndarray:
data = self.adapter(data, strict=False, stage="inference", **kwargs)
data = keras.tree.map_structure(keras.ops.convert_to_tensor, data)
log_prob = self._log_prob(**data)
log_prob = self._log_prob(**data, **kwargs)
log_prob = keras.ops.convert_to_numpy(log_prob)

return log_prob

def _log_prob(
self, inference_variables: Tensor, inference_conditions: Tensor = None, summary_variables: Tensor = None
self,
inference_variables: Tensor,
inference_conditions: Tensor = None,
summary_variables: Tensor = None,
**kwargs,
) -> Tensor:
if self.summary_network is None:
if summary_variables is not None:
Expand All @@ -200,11 +211,17 @@ def _log_prob(
if summary_variables is None:
raise ValueError("Summary variables are required when a summary network is present.")

summary_outputs = self.summary_network(summary_variables)
summary_outputs = self.summary_network(
summary_variables, **filter_kwargs(kwargs, self.summary_network.call)
)

if inference_conditions is None:
inference_conditions = summary_outputs
else:
inference_conditions = keras.ops.concatenate([inference_conditions, summary_outputs], axis=-1)

return self.inference_network.log_prob(inference_variables, conditions=inference_conditions)
return self.inference_network.log_prob(
inference_variables,
conditions=inference_conditions,
**filter_kwargs(kwargs, self.inference_network.log_prob),
)
Loading