Skip to content

Add tests for function list_bedrock_models. #120

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

bernata
Copy link

@bernata bernata commented Mar 10, 2025

Issue #, if available:
Issue 121: Request to add unit tests and coverage data

Description of changes:

By submitting this pull request, I confirm that you can use, modify, copy, and redistribute this contribution, under the terms of your choice.

diff --git c/.github/workflows/aws-genai-cicd-suite.yml i/.github/workflows/aws-genai-cicd-suite.yml
index b16c41b..656154f 100644
--- c/.github/workflows/aws-genai-cicd-suite.yml
+++ i/.github/workflows/aws-genai-cicd-suite.yml
@@ -25,16 +25,17 @@ jobs:
     - name: Checkout code
       uses: actions/checkout@v3

-    - name: Set up Node.js
-      uses: actions/setup-node@v3
+    - name: Set up Python
+      uses: actions/setup-python@v2
       with:
-        node-version: '20'
+        python-version: 3.12  # Adjust the Python version as needed

-    - name: Install dependencies @actions/core and @actions/github
-      run: |
-        npm install @actions/core
-        npm install @actions/github
-      shell: bash
+    - name: Install dependencies
+      run: pip install -r requirements.txt
+
+    - name: Test
+      run: python -m unittest
+      working-directory: ./tests

     # check if required dependencies @actions/core and @actions/github are installed
     - name: Check if required dependencies are installed
diff --git c/src/api/models/bedrock.py i/src/api/models/bedrock.py
index be3fab2..39ed9ae 100644
--- c/src/api/models/bedrock.py
+++ i/src/api/models/bedrock.py
@@ -3,7 +3,7 @@ import json
 import logging
 import re
 import time
-from abc import ABC
+from abc import ABC, abstractmethod
 from typing import AsyncIterable, Iterable, Literal

 import boto3
@@ -73,8 +73,27 @@ SUPPORTED_BEDROCK_EMBEDDING_MODELS = {

 ENCODER = tiktoken.get_encoding("cl100k_base")

+class BedrockClientInterface(ABC):
+    @AbstractMethod
+    def list_inference_profiles(self, **kwargs) -> dict:
+        pass

-def list_bedrock_models() -> dict:
+    @AbstractMethod
+    def list_foundation_models(self, **kwargs) -> dict:
+        pass
+
+class BedrockClient(BedrockClientInterface):
+    def __init__(self, client):
+        self.bedrock_client = client
+
+    def list_inference_profiles(self, **kwargs) -> dict:
+        return self.bedrock_client.list_inference_profiles(**kwargs)
+
+    def list_foundation_models(self, **kwargs) -> dict:
+        return self.bedrock_client.list_foundation_models(**kwargs)
+
+
+def list_bedrock_models(client : BedrockClientInterface) -> dict:
     """Automatically getting a list of supported models.

     Returns a model list combines:
@@ -86,11 +105,11 @@ def list_bedrock_models() -> dict:
         profile_list = []
         if ENABLE_CROSS_REGION_INFERENCE:
             # List system defined inference profile IDs
-            response = bedrock_client.list_inference_profiles(maxResults=1000, typeEquals="SYSTEM_DEFINED")
+            response = client.list_inference_profiles(maxResults=1000, typeEquals="SYSTEM_DEFINED")
             profile_list = [p["inferenceProfileId"] for p in response["inferenceProfileSummaries"]]

         # List foundation models, only cares about text outputs here.
-        response = bedrock_client.list_foundation_models(byOutputModality="TEXT")
+        response = client.list_foundation_models(byOutputModality="TEXT")

         for model in response["modelSummaries"]:
             model_id = model.get("modelId", "N/A")
@@ -123,14 +142,14 @@ def list_bedrock_models() -> dict:

 # Initialize the model list.
-bedrock_model_list = list_bedrock_models()
+bedrock_model_list = list_bedrock_models(BedrockClient(bedrock_client))

 class BedrockModel(BaseChatModel):
     def list_models(self) -> list[str]:
         """Always refresh the latest model list"""
         global bedrock_model_list
-        bedrock_model_list = list_bedrock_models()
+        bedrock_model_list = list_bedrock_models(BedrockClient(bedrock_client))
         return list(bedrock_model_list.keys())

     def validate(self, chat_request: ChatRequest):
diff --git c/tests/__init__.py i/tests/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git c/tests/list_bedrock_models_test.py i/tests/list_bedrock_models_test.py
new file mode 100644
index 0000000..262fe20
--- /dev/null
+++ i/tests/list_bedrock_models_test.py
@@ -0,0 +1,179 @@
+from typing import Literal
+
+from src.api.models.bedrock import list_bedrock_models, BedrockClientInterface
+
+def test_default_model():
+    client = FakeBedrockClient(
+        inference_profile("p1-id", "p1", "SYSTEM_DEFINED"),
+        inference_profile("p2-id", "p2", "APPLICATION"),
+        inference_profile("p3-id", "p3", "SYSTEM_DEFINED"),
+    )
+
+    models = list_bedrock_models(client)
+
+    assert models == {
+        "anthropic.claude-3-sonnet-20240229-v1:0": {
+            "modalities": ["TEXT", "IMAGE"]
+        }
+    }
+
+def test_one_model():
+    client = FakeBedrockClient(
+        model("model-id", "model-name", stream_supported=True, input_modalities=["TEXT", "IMAGE"])
+    )
+
+    models = list_bedrock_models(client)
+
+    assert models == {
+        "model-id": {
+            "modalities": ["TEXT", "IMAGE"]
+        }
+    }
+
+def test_two_models():
+    client = FakeBedrockClient(
+        model("model-id-1", "model-name-1", stream_supported=True, input_modalities=["TEXT", "IMAGE"]),
+        model("model-id-2", "model-name-2", stream_supported=True, input_modalities=["IMAGE"])
+    )
+
+    models = list_bedrock_models(client)
+
+    assert models == {
+        "model-id-1": {
+            "modalities": ["TEXT", "IMAGE"]
+        },
+        "model-id-2": {
+            "modalities": ["IMAGE"]
+        }
+    }
+
+def test_filter_models():
+    client = FakeBedrockClient(
+        model("model-id", "model-name-1", stream_supported=True, input_modalities=["TEXT"], status="LEGACY"),
+        model("model-id-no-stream", "model-name-2", stream_supported=False, input_modalities=["TEXT", "IMAGE"]),
+        model("model-id-not-active", "model-name-3", stream_supported=True, status="DISABLED"),
+        model("model-id-not-text-output", "model-name-4", stream_supported=True, output_modalities=["IMAGE"])
+    )
+
+    models = list_bedrock_models(client)
+
+    assert models == {
+        "model-id": {
+            "modalities": ["TEXT"]
+        }
+    }
+
+def test_one_inference_profile():
+    client = FakeBedrockClient(
+        inference_profile("us.model-id", "p1", "SYSTEM_DEFINED"),
+        model("model-id", "model-name", stream_supported=True, input_modalities=["TEXT"])
+    )
+
+    models = list_bedrock_models(client)
+
+    assert models == {
+        "model-id": {
+            "modalities": ["TEXT"]
+        },
+        "us.model-id": {
+            "modalities": ["TEXT"]
+        }
+    }
+
+def test_default_model_on_throw():
+    client = ThrowingBedrockClient()
+
+    models = list_bedrock_models(client)
+
+    assert models == {
+        "anthropic.claude-3-sonnet-20240229-v1:0": {
+            "modalities": ["TEXT", "IMAGE"]
+        }
+    }
+
+def inference_profile(profile_id: str, name: str, profile_type: Literal["SYSTEM_DEFINED", "APPLICATION"]):
+    return {
+        "inferenceProfileName": name,
+        "inferenceProfileId": profile_id,
+        "type": profile_type
+    }
+
+def model(
+        model_id: str,
+        model_name: str,
+        input_modalities: list[str] = None,
+        output_modalities: list[str] = None,
+        stream_supported: bool = False,
+        inference_types: list[str] = None,
+        status: str = "ACTIVE") -> dict:
+    if input_modalities is None:
+        input_modalities = ["TEXT"]
+    if output_modalities is None:
+        output_modalities = ["TEXT"]
+    if inference_types is None:
+        inference_types = ["ON_DEMAND"]
+    return {
+                "modelArn": "arn:model:" + model_id,
+                "modelId": model_id,
+                "modelName": model_name,
+                "providerName": "anthropic",
+                "inputModalities":input_modalities,
+                "outputModalities": output_modalities,
+                "responseStreamingSupported": stream_supported,
+                "customizationsSupported": ["FINE_TUNING"],
+                "inferenceTypesSupported": inference_types,
+                "modelLifecycle": {
+                    "status": status
+                }
+            }
+
+def _filter_inference_profiles(inference_profiles: list[dict], profile_type: Literal["SYSTEM_DEFINED", "APPLICATION"], max_results: int = 100):
+    return [p for p in inference_profiles if p.get("type") == profile_type][:max_results]
+
+def _filter_models(
+        models: list[dict],
+        provider_name: str | None,
+        customization_type: Literal["FINE_TUNING","CONTINUED_PRE_TRAINING","DISTILLATION"] | None,
+        output_modality: Literal["TEXT","IMAGE","EMBEDDING"] | None,
+        inference_type: Literal["ON_DEMAND","PROVISIONED"] | None):
+    return [m for m in models if
+                (provider_name is None or m.get("providerName") == provider_name) and
+                (output_modality is None or output_modality in m.get("outputModalities")) and
+                (customization_type is None or customization_type in m.get("customizationsSupported")) and
+                (inference_type is None or inference_type in m.get("inferenceTypesSupported"))
+            ]
+
+class ThrowingBedrockClient(BedrockClientInterface):
+    def list_inference_profiles(self, **kwargs) -> dict:
+        raise Exception("throwing bedrock client always throws exception")
+    def list_foundation_models(self, **kwargs) -> dict:
+        raise Exception("throwing bedrock client always throws exception")
+
+class FakeBedrockClient(BedrockClientInterface):
+    def __init__(self, *args):
+        self.inference_profiles = [p for p in args if p.get("inferenceProfileId", "") != ""]
+        self.models = [m for m in args if m.get("modelId", "") != ""]
+
+        unexpected =  [u for u in args if (u.get("modelId", "") == "" and u.get("inferenceProfileId", "") == "")]
+        if len(unexpected) > 0:
+            raise Exception("expected a model or a profile")
+
+    def list_inference_profiles(self, **kwargs) -> dict:
+        return {
+            "inferenceProfileSummaries": _filter_inference_profiles(
+                                    self.inference_profiles,
+                                    profile_type=kwargs["typeEquals"],
+                                    max_results=kwargs.get("maxResults", 100)
+                                 )
+        }
+
+    def list_foundation_models(self, **kwargs) -> dict:
+        return {
+            "modelSummaries": _filter_models(
+                                self.models,
+                                provider_name=kwargs.get("byProvider", None),
+                                customization_type=kwargs.get("byCustomizationType", None),
+                                output_modality=kwargs.get("byOutputModality", None),
+                                inference_type=kwargs.get("byInferenceType", None)
+                              )
+        }
\ No newline at end of file
@bernata bernata force-pushed the list-models-tests branch from 882f68c to eb2e1d4 Compare March 13, 2025 16:32
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant