-
Notifications
You must be signed in to change notification settings - Fork 175
Add tests for function list_bedrock_models. #120
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
bernata
wants to merge
1
commit into
aws-samples:main
Choose a base branch
from
bernata:list-models-tests
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
diff --git c/.github/workflows/aws-genai-cicd-suite.yml i/.github/workflows/aws-genai-cicd-suite.yml index b16c41b..656154f 100644 --- c/.github/workflows/aws-genai-cicd-suite.yml +++ i/.github/workflows/aws-genai-cicd-suite.yml @@ -25,16 +25,17 @@ jobs: - name: Checkout code uses: actions/checkout@v3 - - name: Set up Node.js - uses: actions/setup-node@v3 + - name: Set up Python + uses: actions/setup-python@v2 with: - node-version: '20' + python-version: 3.12 # Adjust the Python version as needed - - name: Install dependencies @actions/core and @actions/github - run: | - npm install @actions/core - npm install @actions/github - shell: bash + - name: Install dependencies + run: pip install -r requirements.txt + + - name: Test + run: python -m unittest + working-directory: ./tests # check if required dependencies @actions/core and @actions/github are installed - name: Check if required dependencies are installed diff --git c/src/api/models/bedrock.py i/src/api/models/bedrock.py index be3fab2..39ed9ae 100644 --- c/src/api/models/bedrock.py +++ i/src/api/models/bedrock.py @@ -3,7 +3,7 @@ import json import logging import re import time -from abc import ABC +from abc import ABC, abstractmethod from typing import AsyncIterable, Iterable, Literal import boto3 @@ -73,8 +73,27 @@ SUPPORTED_BEDROCK_EMBEDDING_MODELS = { ENCODER = tiktoken.get_encoding("cl100k_base") +class BedrockClientInterface(ABC): + @AbstractMethod + def list_inference_profiles(self, **kwargs) -> dict: + pass -def list_bedrock_models() -> dict: + @AbstractMethod + def list_foundation_models(self, **kwargs) -> dict: + pass + +class BedrockClient(BedrockClientInterface): + def __init__(self, client): + self.bedrock_client = client + + def list_inference_profiles(self, **kwargs) -> dict: + return self.bedrock_client.list_inference_profiles(**kwargs) + + def list_foundation_models(self, **kwargs) -> dict: + return self.bedrock_client.list_foundation_models(**kwargs) + + +def list_bedrock_models(client : BedrockClientInterface) -> dict: """Automatically getting a list of supported models. Returns a model list combines: @@ -86,11 +105,11 @@ def list_bedrock_models() -> dict: profile_list = [] if ENABLE_CROSS_REGION_INFERENCE: # List system defined inference profile IDs - response = bedrock_client.list_inference_profiles(maxResults=1000, typeEquals="SYSTEM_DEFINED") + response = client.list_inference_profiles(maxResults=1000, typeEquals="SYSTEM_DEFINED") profile_list = [p["inferenceProfileId"] for p in response["inferenceProfileSummaries"]] # List foundation models, only cares about text outputs here. - response = bedrock_client.list_foundation_models(byOutputModality="TEXT") + response = client.list_foundation_models(byOutputModality="TEXT") for model in response["modelSummaries"]: model_id = model.get("modelId", "N/A") @@ -123,14 +142,14 @@ def list_bedrock_models() -> dict: # Initialize the model list. -bedrock_model_list = list_bedrock_models() +bedrock_model_list = list_bedrock_models(BedrockClient(bedrock_client)) class BedrockModel(BaseChatModel): def list_models(self) -> list[str]: """Always refresh the latest model list""" global bedrock_model_list - bedrock_model_list = list_bedrock_models() + bedrock_model_list = list_bedrock_models(BedrockClient(bedrock_client)) return list(bedrock_model_list.keys()) def validate(self, chat_request: ChatRequest): diff --git c/tests/__init__.py i/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git c/tests/list_bedrock_models_test.py i/tests/list_bedrock_models_test.py new file mode 100644 index 0000000..262fe20 --- /dev/null +++ i/tests/list_bedrock_models_test.py @@ -0,0 +1,179 @@ +from typing import Literal + +from src.api.models.bedrock import list_bedrock_models, BedrockClientInterface + +def test_default_model(): + client = FakeBedrockClient( + inference_profile("p1-id", "p1", "SYSTEM_DEFINED"), + inference_profile("p2-id", "p2", "APPLICATION"), + inference_profile("p3-id", "p3", "SYSTEM_DEFINED"), + ) + + models = list_bedrock_models(client) + + assert models == { + "anthropic.claude-3-sonnet-20240229-v1:0": { + "modalities": ["TEXT", "IMAGE"] + } + } + +def test_one_model(): + client = FakeBedrockClient( + model("model-id", "model-name", stream_supported=True, input_modalities=["TEXT", "IMAGE"]) + ) + + models = list_bedrock_models(client) + + assert models == { + "model-id": { + "modalities": ["TEXT", "IMAGE"] + } + } + +def test_two_models(): + client = FakeBedrockClient( + model("model-id-1", "model-name-1", stream_supported=True, input_modalities=["TEXT", "IMAGE"]), + model("model-id-2", "model-name-2", stream_supported=True, input_modalities=["IMAGE"]) + ) + + models = list_bedrock_models(client) + + assert models == { + "model-id-1": { + "modalities": ["TEXT", "IMAGE"] + }, + "model-id-2": { + "modalities": ["IMAGE"] + } + } + +def test_filter_models(): + client = FakeBedrockClient( + model("model-id", "model-name-1", stream_supported=True, input_modalities=["TEXT"], status="LEGACY"), + model("model-id-no-stream", "model-name-2", stream_supported=False, input_modalities=["TEXT", "IMAGE"]), + model("model-id-not-active", "model-name-3", stream_supported=True, status="DISABLED"), + model("model-id-not-text-output", "model-name-4", stream_supported=True, output_modalities=["IMAGE"]) + ) + + models = list_bedrock_models(client) + + assert models == { + "model-id": { + "modalities": ["TEXT"] + } + } + +def test_one_inference_profile(): + client = FakeBedrockClient( + inference_profile("us.model-id", "p1", "SYSTEM_DEFINED"), + model("model-id", "model-name", stream_supported=True, input_modalities=["TEXT"]) + ) + + models = list_bedrock_models(client) + + assert models == { + "model-id": { + "modalities": ["TEXT"] + }, + "us.model-id": { + "modalities": ["TEXT"] + } + } + +def test_default_model_on_throw(): + client = ThrowingBedrockClient() + + models = list_bedrock_models(client) + + assert models == { + "anthropic.claude-3-sonnet-20240229-v1:0": { + "modalities": ["TEXT", "IMAGE"] + } + } + +def inference_profile(profile_id: str, name: str, profile_type: Literal["SYSTEM_DEFINED", "APPLICATION"]): + return { + "inferenceProfileName": name, + "inferenceProfileId": profile_id, + "type": profile_type + } + +def model( + model_id: str, + model_name: str, + input_modalities: list[str] = None, + output_modalities: list[str] = None, + stream_supported: bool = False, + inference_types: list[str] = None, + status: str = "ACTIVE") -> dict: + if input_modalities is None: + input_modalities = ["TEXT"] + if output_modalities is None: + output_modalities = ["TEXT"] + if inference_types is None: + inference_types = ["ON_DEMAND"] + return { + "modelArn": "arn:model:" + model_id, + "modelId": model_id, + "modelName": model_name, + "providerName": "anthropic", + "inputModalities":input_modalities, + "outputModalities": output_modalities, + "responseStreamingSupported": stream_supported, + "customizationsSupported": ["FINE_TUNING"], + "inferenceTypesSupported": inference_types, + "modelLifecycle": { + "status": status + } + } + +def _filter_inference_profiles(inference_profiles: list[dict], profile_type: Literal["SYSTEM_DEFINED", "APPLICATION"], max_results: int = 100): + return [p for p in inference_profiles if p.get("type") == profile_type][:max_results] + +def _filter_models( + models: list[dict], + provider_name: str | None, + customization_type: Literal["FINE_TUNING","CONTINUED_PRE_TRAINING","DISTILLATION"] | None, + output_modality: Literal["TEXT","IMAGE","EMBEDDING"] | None, + inference_type: Literal["ON_DEMAND","PROVISIONED"] | None): + return [m for m in models if + (provider_name is None or m.get("providerName") == provider_name) and + (output_modality is None or output_modality in m.get("outputModalities")) and + (customization_type is None or customization_type in m.get("customizationsSupported")) and + (inference_type is None or inference_type in m.get("inferenceTypesSupported")) + ] + +class ThrowingBedrockClient(BedrockClientInterface): + def list_inference_profiles(self, **kwargs) -> dict: + raise Exception("throwing bedrock client always throws exception") + def list_foundation_models(self, **kwargs) -> dict: + raise Exception("throwing bedrock client always throws exception") + +class FakeBedrockClient(BedrockClientInterface): + def __init__(self, *args): + self.inference_profiles = [p for p in args if p.get("inferenceProfileId", "") != ""] + self.models = [m for m in args if m.get("modelId", "") != ""] + + unexpected = [u for u in args if (u.get("modelId", "") == "" and u.get("inferenceProfileId", "") == "")] + if len(unexpected) > 0: + raise Exception("expected a model or a profile") + + def list_inference_profiles(self, **kwargs) -> dict: + return { + "inferenceProfileSummaries": _filter_inference_profiles( + self.inference_profiles, + profile_type=kwargs["typeEquals"], + max_results=kwargs.get("maxResults", 100) + ) + } + + def list_foundation_models(self, **kwargs) -> dict: + return { + "modelSummaries": _filter_models( + self.models, + provider_name=kwargs.get("byProvider", None), + customization_type=kwargs.get("byCustomizationType", None), + output_modality=kwargs.get("byOutputModality", None), + inference_type=kwargs.get("byInferenceType", None) + ) + } \ No newline at end of file
882f68c
to
eb2e1d4
Compare
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Issue #, if available:
Issue 121: Request to add unit tests and coverage data
Description of changes:
By submitting this pull request, I confirm that you can use, modify, copy, and redistribute this contribution, under the terms of your choice.