-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 822fdc7
Showing
5 changed files
with
8,483 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
import numpy as np | ||
import sys | ||
from random import randint | ||
from numpy import linalg as LA | ||
import random | ||
|
||
|
||
class Perceptron(): | ||
def __init__(self, x_train, y_train): | ||
self.x_train = x_train | ||
self.y_train = y_train | ||
self._eta = 0.01 | ||
self._epochs = 20 | ||
|
||
def train(self): | ||
w = np.zeros([3, 8]) | ||
for e in range(self._epochs): | ||
mistake = 0 | ||
for i in range(len(self.x_train)): | ||
x, y = shuffle(self.x_train, self.y_train) | ||
y_hat = int(np.argmax(np.dot(w, x))) | ||
if y != y_hat: | ||
mistake += 1 | ||
w[y, :] = w[y, :] + self._eta * x | ||
w[y_hat, :] = w[y_hat, :] - self._eta * x | ||
return w, mistake | ||
|
||
|
||
class SVM(): | ||
def __init__(self, x_train, y_train): | ||
self.x_train = x_train | ||
self.y_train = y_train | ||
self._epochs = 20 | ||
self._lambda = 0.001 | ||
self._eta = 0.01 | ||
|
||
def train(self): | ||
w = np.zeros([3, 8]) | ||
for e in range(self._epochs): | ||
mistake = 0 | ||
for i in range(len(self.x_train)): | ||
#shuffle | ||
x, y = shuffle(self.x_train, self.y_train) | ||
#predict | ||
y_hat = int(np.argmax(np.dot(w, x))) | ||
#update | ||
if y != y_hat: | ||
mistake += 1 | ||
w[y, :] = w[y, :] * (1 - self._eta * self._lambda) + self._eta * x | ||
w[y_hat, :] = w[y_hat, :] * (1 - self._eta * self._lambda) - self._eta * x | ||
return w, mistake | ||
|
||
class PassiveAggressive(): | ||
def __init__(self, x_train, y_train): | ||
self.x_train = x_train | ||
self.y_train = y_train | ||
self._epochs = 25 | ||
|
||
def train(self): | ||
w = np.zeros([3, 8]) | ||
for e in range(self._epochs): | ||
mistake = 0 | ||
for i in range(len(self.x_train)): | ||
x, y = shuffle(self.x_train, self.y_train) | ||
# predict | ||
y_hat = int(np.argmax(np.dot(w, x))) | ||
# update | ||
if y != y_hat: | ||
mistake += 1 | ||
loss = max(0, 1 - np.dot(w[y, :], x) + np.dot(w[y_hat, :], x)) | ||
tau = loss / (2 * np.power(LA.norm(x), 2)) | ||
w[y, :] = w[y, :] + tau * x | ||
w[y_hat, :] = w[y_hat, :] - tau * x | ||
return w, mistake | ||
|
||
def shuffle(x,y): | ||
p = randint(0,len(x)-1) | ||
return x[p],int(y[p]) | ||
|
||
|
||
def load_data(): | ||
train_x = open(sys.argv[1], 'r') | ||
train_x = np.loadtxt(train_x.name, dtype=str, delimiter=",") | ||
replaceCharsForInts(train_x) | ||
train_x = train_x.astype(np.float) | ||
|
||
train_y = open(sys.argv[2], 'r') | ||
train_y = np.loadtxt(train_y.name, delimiter=",") | ||
|
||
test_x = open(sys.argv[3], 'r') | ||
test_x = np.loadtxt(test_x.name, dtype=str, delimiter=',') | ||
replaceCharsForInts(test_x) | ||
test_x = test_x.astype(np.float) | ||
|
||
test_y = open(sys.argv[4], 'r') | ||
test_y = np.loadtxt(test_y.name, dtype=int, delimiter=',') | ||
return train_x, train_y, test_x,test_y | ||
|
||
def convertCharToNum(c): | ||
if c =='M': | ||
return 1.0 | ||
elif c == 'F': | ||
return 2.0 | ||
else:#'I' | ||
return 3.0 | ||
|
||
def replaceCharsForInts(l): | ||
for col in l: | ||
res = convertCharToNum(col[0]) | ||
col[0] = np.float(res) | ||
|
||
def test(test_x, test_y): | ||
miss = 0 | ||
for i in range(len(test_x)): | ||
res = int(np.argmax(np.dot(w, test_x[i]))) | ||
if res != test_y[i]: | ||
miss += 1 | ||
return miss | ||
|
||
train_x, train_y, test_x,test_y = load_data() | ||
percep = Perceptron(train_x, train_y) | ||
svm = SVM(train_x, train_y) | ||
pa = PassiveAggressive(train_x, train_y) | ||
|
||
algos = [percep, svm, pa] | ||
for algo in algos: | ||
w, mistakes = algo.train() | ||
miss = test(test_x, test_y) | ||
print(algo.__class__.__name__, "accuracy:", "{0:.2f}%".format((1 - miss / len(test_x)) * 100)) |
Oops, something went wrong.