Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/045 one hot encoding #71

Merged
merged 8 commits into from
Nov 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# Copyright 2022 RTDIP
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pyspark.sql import DataFrame as PySparkDataFrame
from pyspark.sql import functions as F
from ...interfaces import TransformerInterface
from ...._pipeline_utils.models import Libraries, SystemType


class OneHotEncoding(TransformerInterface):
"""
Performs One-Hot Encoding on a specified column of a PySpark DataFrame.

Example
--------
```python
from src.sdk.python.rtdip_sdk.pipelines.data_wranglers.spark.data_quality.one_hot_encoding import OneHotEncoding
from pyspark.sql import SparkSession


spark = ... # SparkSession
df = ... # Get a PySpark DataFrame

one_hot_encoder = OneHotEncoding(df, "column_name", ["list_of_distinct_values"])
result_df = one_hot_encoder.encode()
result_df.show()
```

Parameters:
df (DataFrame): The PySpark DataFrame to apply encoding on.
column (str): The name of the column to apply the encoding to.
values (list, optional): A list of distinct values to encode. If not provided,
the distinct values from the data will be used.
"""

df: PySparkDataFrame
column: str
values: list

def __init__(self, df: PySparkDataFrame, column: str, values: list = None) -> None:
self.df = df
self.column = column
self.values = values

@staticmethod
def system_type():
"""
Attributes:
SystemType (Environment): Requires PYSPARK
"""
return SystemType.PYSPARK

@staticmethod
def libraries():
libraries = Libraries()
return libraries

@staticmethod
def settings() -> dict:
return {}

def pre_transform_validation(self):
"""
Validate the input data before transformation.
- Check if the specified column exists in the DataFrame.
- If no values are provided, check if the distinct values can be computed.
- Ensure the DataFrame is not empty.
"""
if self.df is None or self.df.count() == 0:
raise ValueError("The DataFrame is empty.")

if self.column not in self.df.columns:
raise ValueError(f"Column '{self.column}' does not exist in the DataFrame.")

if not self.values:
distinct_values = [
row[self.column]
for row in self.df.select(self.column).distinct().collect()
]
if not distinct_values:
raise ValueError(f"No distinct values found in column '{self.column}'.")
self.values = distinct_values

def post_transform_validation(self):
"""
Validate the result after transformation.
- Ensure that new columns have been added based on the distinct values.
- Verify the transformed DataFrame contains the expected number of columns.
"""
expected_columns = [
f"{self.column}_{value if value is not None else 'None'}"
for value in self.values
]
missing_columns = [
col for col in expected_columns if col not in self.df.columns
]

if missing_columns:
raise ValueError(
f"Missing columns in the transformed DataFrame: {missing_columns}"
)

if self.df.count() == 0:
raise ValueError("The transformed DataFrame is empty.")

def transform(self) -> PySparkDataFrame:
if not self.values:
self.values = [
row[self.column]
for row in self.df.select(self.column).distinct().collect()
]

for value in self.values:
self.df = self.df.withColumn(
f"{self.column}_{value if value is not None else 'None'}",
F.when(F.col(self.column) == value, 1).otherwise(0),
)
return self.df
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
# Copyright 2022 RTDIP
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, FloatType
from src.sdk.python.rtdip_sdk.pipelines.transformers.spark.machine_learning.one_hot_encoding import (
OneHotEncoding,
)

# Define the schema outside the test functions
SCHEMA = StructType(
[
StructField("TagName", StringType(), True),
StructField("EventTime", StringType(), True),
StructField("Status", StringType(), True),
StructField("Value", FloatType(), True),
]
)


@pytest.fixture(scope="session")
def spark_session():
return SparkSession.builder.master("local[2]").appName("test").getOrCreate()


def test_empty_df(spark_session):
"""Empty DataFrame"""
empty_data = []
empty_df = spark_session.createDataFrame(empty_data, SCHEMA)
encoder = OneHotEncoding(empty_df, "TagName")
result_df = encoder.transform()

assert (
result_df.count() == 0
), "Expected no rows in the result DataFrame for empty input."
assert result_df.columns == [
"TagName",
"EventTime",
"Status",
"Value",
], "Expected no new columns for empty DataFrame."


def test_single_unique_value(spark_session):
"""Single Unique Value"""
data = [
("A2PS64V0J.:ZUX09R", "2024-01-02 20:03:46", "Good", 0.34),
("A2PS64V0J.:ZUX09R", "2024-01-02 16:00:12", "Good", 0.15),
]
df = spark_session.createDataFrame(data, SCHEMA)
encoder = OneHotEncoding(df, "TagName")
result_df = encoder.transform()

expected_columns = [
"TagName",
"EventTime",
"Status",
"Value",
"TagName_A2PS64V0J.:ZUX09R",
]
assert (
result_df.columns == expected_columns
), "Columns do not match for single unique value."
for row in result_df.collect():
assert (
row["TagName_A2PS64V0J.:ZUX09R"] == 1
), "Expected 1 for the one-hot encoded column."


def test_null_values(spark_session):
"""Column with Null Values"""
data = [
("A2PS64V0J.:ZUX09R", "2024-01-02 20:03:46", "Good", 0.34),
(None, "2024-01-02 16:00:12", "Good", 0.15),
]
df = spark_session.createDataFrame(data, SCHEMA)
encoder = OneHotEncoding(df, "TagName")
result_df = encoder.transform()

expected_columns = [
"TagName",
"EventTime",
"Status",
"Value",
"TagName_A2PS64V0J.:ZUX09R",
"TagName_None",
]
assert (
result_df.columns == expected_columns
), f"Columns do not match for null value case. Expected {expected_columns}, but got {result_df.columns}"
for row in result_df.collect():
if row["TagName"] == "A2PS64V0J.:ZUX09R":
assert (
row["TagName_A2PS64V0J.:ZUX09R"] == 1
), "Expected 1 for valid TagName."
assert (
row["TagName_None"] == 0
), "Expected 0 for TagName_None for valid TagName."
elif row["TagName"] is None:
assert (
row["TagName_A2PS64V0J.:ZUX09R"] == 0
), "Expected 0 for TagName_A2PS64V0J.:ZUX09R for None TagName."
assert (
row["TagName_None"] == 0
), "Expected 0 for TagName_None for None TagName."


def test_large_unique_values(spark_session):
"""Large Number of Unique Values"""
data = [
(f"Tag_{i}", f"2024-01-02 20:03:{i:02d}", "Good", i * 1.0) for i in range(1000)
]
df = spark_session.createDataFrame(data, SCHEMA)
encoder = OneHotEncoding(df, "TagName")
result_df = encoder.transform()

assert (
len(result_df.columns) == len(SCHEMA.fields) + 1000
), "Expected 1000 additional columns for one-hot encoding."


def test_special_characters(spark_session):
"""Special Characters in Column Values"""
data = [
("A2PS64V0J.:ZUX09R", "2024-01-02 20:03:46", "Good", 0.34),
("@Special#Tag!", "2024-01-02 16:00:12", "Good", 0.15),
]
df = spark_session.createDataFrame(data, SCHEMA)
encoder = OneHotEncoding(df, "TagName")
result_df = encoder.transform()

expected_columns = [
"TagName",
"EventTime",
"Status",
"Value",
"TagName_A2PS64V0J.:ZUX09R",
"TagName_@Special#Tag!",
]
assert (
result_df.columns == expected_columns
), "Columns do not match for special characters."
for row in result_df.collect():
for tag in ["A2PS64V0J.:ZUX09R", "@Special#Tag!"]:
expected_value = 1 if row["TagName"] == tag else 0
column_name = f"TagName_{tag}"
assert (
row[column_name] == expected_value
), f"Expected {expected_value} for {column_name}."


def test_distinct_value(spark_session):
"""Dataset with Multiple TagName Values"""

data = [
("A2PS64V0J.:ZUX09R", "2024-01-02 20:03:46", "Good", 0.3400000035762787),
("A2PS64V0J.:ZUX09R", "2024-01-02 16:00:12", "Good", 0.15000000596046448),
(
"-4O7LSSAM_3EA02:2GT7E02I_R_MP",
"2024-01-02 20:09:58",
"Good",
7107.82080078125,
),
("_LT2EPL-9PM0.OROTENV3:", "2024-01-02 12:27:10", "Good", 19407.0),
("1N325T3MTOR-P0L29:9.T0", "2024-01-02 23:41:10", "Good", 19376.0),
]

df = spark_session.createDataFrame(data, SCHEMA)

encoder = OneHotEncoding(df, "TagName")
result_df = encoder.transform()

result = result_df.collect()

expected_columns = df.columns + [
f"TagName_{row['TagName']}" for row in df.select("TagName").distinct().collect()
]

assert set(result_df.columns) == set(expected_columns)

tag_names = df.select("TagName").distinct().collect()
for row in result:
tag_name = row["TagName"]
for tag in tag_names:
column_name = f"TagName_{tag['TagName']}"
if tag["TagName"] == tag_name:
assert row[column_name] == 1.0
else:
assert row[column_name] == 0.0