Skip to content

Commit

Permalink
Create bleu testing script bleu_evaluation.py
Browse files Browse the repository at this point in the history
Signed-off-by: Daniel Schaeffer <[email protected]>
  • Loading branch information
dnsch committed Jun 26, 2024
1 parent 9eb492e commit a22f2a4
Showing 1 changed file with 140 additions and 0 deletions.
140 changes: 140 additions & 0 deletions src/scripts/testing/bleu_evaluation.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"This script sets up a pipeline for evaluating a language model using the \"Kubermatic/cncf-question-and-answer-dataset-for-llm-training\" dataset.\n",
"It leverages advanced techniques including 4-bit quantization and evaluates the model using BLEU score.\n",
"\n",
"Dependencies:\n",
"- accelerate\n",
"- datasets\n",
"- trl\n",
"- peft\n",
"- bitsandbytes\n",
"- evaluate\n",
"- transformers\n",
"- torch\n",
"- tqdm\n",
"- pandas\n",
"- huggingface_hub\n",
"\n",
"Environment Setup:\n",
"- Ensure Hugging Face Hub authentication with 'notebook_login'.\n",
"\n",
"Model Configuration:\n",
"- Uses BitsAndBytesConfig for 4-bit quantization.\n",
"- Configures AutoModelForCausalLM for causal language modeling tasks.\n",
"\n",
"Training Data:\n",
"- Loads a subset of 1000 samples from the dataset.\n",
"\n",
"Example Question/Answer:\n",
"- Tokenizes and generates an answer for a sample question from the dataset.\n",
"- Evaluates the generated answer against the reference answer using BLEU score.\n",
"\n",
"Output:\n",
"- Prints the example question, reference answer, predicted answer, and BLEU score.\n",
"\"\"\"\n",
"\n",
"!pip install -q -U accelerate\n",
"!pip install -q -U datasets\n",
"!pip install -q -U trl\n",
"!pip install -q -U peft\n",
"!pip install -q -U -i https://pypi.org/simple/ bitsandbytes\n",
"!pip install evaluate -q -U\n",
"\n",
"import evaluate\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
"import transformers\n",
"from datasets import load_dataset\n",
"import torch\n",
"import re\n",
"from tqdm import tqdm\n",
"import pandas as pd\n",
"from datasets import Dataset\n",
"from peft import LoraConfig, PeftConfig\n",
"import bitsandbytes as bnb\n",
"import accelerate\n",
"from trl import SFTTrainer\n",
"from transformers import (AutoModelForCausalLM,\n",
" AutoModelForQuestionAnswering,\n",
" AutoTokenizer,\n",
" BitsAndBytesConfig,\n",
" TrainingArguments,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import hf_hub_download\n",
"from huggingface_hub import notebook_login\n",
"notebook_login()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_id = \"google/gemma-1.1-2b-it\"\n",
"\n",
"bnb_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_quant_type=\"nf4\",\n",
" bnb_4bit_compute_dtype=torch.bfloat16\n",
")\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"# TODO: Check if this can be changed to AutoModelForQuestionAnswering with GEMMA\n",
"model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map=\"auto\")\n",
"\n",
"# Training Data\n",
"dataset = load_dataset(\"Kubermatic/cncf-question-and-answer-dataset-for-llm-training\", split=\"train[:1000]\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#example question/answer\n",
"\n",
"question = dataset[1][\"Question\"]\n",
"device = \"cuda:0\"\n",
"inputs = tokenizer(question, return_tensors=\"pt\").to(device)\n",
"\n",
"outputs = model.generate(**inputs, max_new_tokens=500)\n",
"tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
"prediction = [tokenizer.decode(outputs[0], skip_special_tokens=True)]\n",
"reference = dataset[1][\"Answer\"]\n",
"reference = [reference]\n",
"\n",
"bleu = evaluate.load(\"bleu\")\n",
"results = bleu.compute(predictions=prediction, references=reference)\n",
"print(\"Question from dataset: \" + question)\n",
"print(\"Answer from dataset: \" + reference[0])\n",
"print(\"Predicted Answer: \" + prediction[0])\n",
"print(results)"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit a22f2a4

Please sign in to comment.