Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -103,17 +103,7 @@ def forward(self, value, key, query, mask):


class Encoder(nn.Module):
def __init__(
self,
src_vocab_size,
embed_size,
num_layers,
heads,
device,
forward_expansion,
dropout,
max_length,
):
def __init__(self,src_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, device, max_length,):

super(Encoder, self).__init__()
self.embed_size = embed_size
@@ -122,25 +112,15 @@ def __init__(
self.position_embedding = nn.Embedding(max_length, embed_size)

self.layers = nn.ModuleList(
[
TransformerBlock(
embed_size,
heads,
dropout=dropout,
forward_expansion=forward_expansion,
)
for _ in range(num_layers)
]
)
[TransformerBlock(embed_size, heads, dropout=dropout, forward_expansion=forward_expansion,)
for _ in range(num_layers)])

self.dropout = nn.Dropout(dropout)

def forward(self, x, mask):
N, seq_length = x.shape
positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
out = self.dropout(
(self.word_embedding(x) + self.position_embedding(positions))
)
out = self.dropout((self.word_embedding(x) + self.position_embedding(positions)))

# In the Encoder the query, key, value are all the same, it's in the
# decoder this will change. This might look a bit odd in this case.
@@ -168,28 +148,15 @@ def forward(self, x, value, key, src_mask, trg_mask):


class Decoder(nn.Module):
def __init__(
self,
trg_vocab_size,
embed_size,
num_layers,
heads,
forward_expansion,
dropout,
device,
max_length,
):
def __init__(self, trg_vocab_size, embed_size, num_layers, heads, forward_expansion,dropout, device, max_length,):
super(Decoder, self).__init__()
self.device = device
self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)

self.layers = nn.ModuleList(
[
DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
for _ in range(num_layers)
]
)
[DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
for _ in range(num_layers)])
self.fc_out = nn.Linear(embed_size, trg_vocab_size)
self.dropout = nn.Dropout(dropout)

@@ -223,28 +190,8 @@ def __init__(
):

super(Transformer, self).__init__()

self.encoder = Encoder(
src_vocab_size,
embed_size,
num_layers,
heads,
device,
forward_expansion,
dropout,
max_length,
)

self.decoder = Decoder(
trg_vocab_size,
embed_size,
num_layers,
heads,
forward_expansion,
dropout,
device,
max_length,
)
self.encoder = Encoder(src_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, device, max_length,)
self.decoder = Decoder(trg_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, device, max_length,)

self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
@@ -257,10 +204,7 @@ def make_src_mask(self, src):

def make_trg_mask(self, trg):
N, trg_len = trg.shape
trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
N, 1, trg_len, trg_len
)

trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(N, 1, trg_len, trg_len)
return trg_mask.to(self.device)

def forward(self, src, trg):
@@ -275,17 +219,15 @@ def forward(self, src, trg):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0], [1, 8, 7, 3, 4, 5, 6, 7, 2]]).to(
device
)
x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0],[1, 8, 7, 3, 4, 5, 6, 7, 2]]).to(device)
trg = torch.tensor([[1, 7, 4, 3, 5, 9, 2, 0], [1, 5, 6, 2, 4, 7, 6, 2]]).to(device)

src_pad_idx = 0
trg_pad_idx = 0
src_vocab_size = 10
trg_vocab_size = 10
model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, device=device).to(
device
)

model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, device=device).to(device)

out = model(x, trg[:, :-1])
print(out.shape)