Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 25 additions & 15 deletions BigGANdeep.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
# Channel ratio is the ratio of
class GBlock(nn.Module):
def __init__(self, in_channels, out_channels,
which_conv=nn.Conv2d, which_bn=layers.bn, activation=None,
which_conv=layers.SNConv2d, which_bn=layers.bn, activation=None,
upsample=None, channel_ratio=4):
super(GBlock, self).__init__()

Expand Down Expand Up @@ -50,36 +50,43 @@ def forward(self, x, y):
h = self.conv1(self.activation(self.bn1(x, y)))
# Apply next BN-ReLU
h = self.activation(self.bn2(h, y))
# Drop channels in x if necessary
if self.in_channels != self.out_channels:
x = x[:, :self.out_channels]
# Upsample both h and x at this point
# Upsample h
if self.upsample:
h = self.upsample(h)
x = self.upsample(x)
# 3x3 convs
h = self.conv2(h)
h = self.conv3(self.activation(self.bn3(h, y)))
# Final 1x1 conv
h = self.conv4(self.activation(self.bn4(h, y)))
# Drop channels in x if necessary
if self.in_channels != self.out_channels:
x = x[:, :self.out_channels]
# Upsample x
if self.upsample:
x = self.upsample(x)
return h + x

def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
arch = {}
arch[512] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2, 1]],
'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1, 1]],
'upsample' : [True] * 7,
'resolution' : [8, 16, 32, 64, 128, 256, 512],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')]) for i in range(3,10)}}
arch[256] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2]],
'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1]],
'upsample' : [True] * 6,
'resolution' : [8, 16, 32, 64, 128, 256],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
for i in range(3,9)}}
arch[128] = {'in_channels' : [ch * item for item in [16, 16, 8, 4, 2]],
'out_channels' : [ch * item for item in [16, 8, 4, 2, 1]],
'out_channels' : [ch * item for item in [16, 8, 4, 2, 1]],
'upsample' : [True] * 5,
'resolution' : [8, 16, 32, 64, 128],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
for i in range(3,8)}}
arch[64] = {'in_channels' : [ch * item for item in [16, 16, 8, 4]],
'out_channels' : [ch * item for item in [16, 8, 4, 2]],
'out_channels' : [ch * item for item in [16, 8, 4, 2]],
'upsample' : [True] * 4,
'resolution' : [8, 16, 32, 64],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
Expand All @@ -94,10 +101,10 @@ def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
return arch

class Generator(nn.Module):
def __init__(self, G_ch=64, G_depth=2, dim_z=128, bottom_width=4, resolution=128,
def __init__(self, G_ch=128, G_depth=2, dim_z=128, bottom_width=4, resolution=512,
G_kernel_size=3, G_attn='64', n_classes=1000,
num_G_SVs=1, num_G_SV_itrs=1,
G_shared=True, shared_dim=0, hier=False,
G_shared=True, shared_dim=0, hier=True,
cross_replica=False, mybn=False,
G_activation=nn.ReLU(inplace=False),
G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8,
Expand Down Expand Up @@ -213,7 +220,7 @@ def __init__(self, G_ch=64, G_depth=2, dim_z=128, bottom_width=4, resolution=128
cross_replica=self.cross_replica,
mybn=self.mybn),
self.activation,
self.which_conv(self.arch['out_channels'][-1], 3))
self.which_conv(self.arch['out_channels'][-1], 128))

# Initialize weights. Optionally skip init for testing.
if not skip_init:
Expand Down Expand Up @@ -265,7 +272,7 @@ def init_weights(self):
def forward(self, z, y):
# If hierarchical, concatenate zs and ys
if self.hier:
z = torch.cat([y, z], 1)
z = torch.cat([z, y], 1)
y = z
# First linear layer
h = self.linear(z)
Expand All @@ -276,9 +283,12 @@ def forward(self, z, y):
# Second inner loop in case block has multiple layers
for block in blocklist:
h = block(h, y)

# Apply batchnorm-relu-conv-tanh at output
return torch.tanh(self.output_layer(h))
# Apply batchnorm-relu-conv
h = self.output_layer(h)
# Take the rgb channels
h = h[:, :3, :, :]
# Apply final tanh at output
return torch.tanh(h)

class DBlock(nn.Module):
def __init__(self, in_channels, out_channels, which_conv=layers.SNConv2d, wide=True,
Expand Down