-
Notifications
You must be signed in to change notification settings - Fork 37
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
148 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
import wave | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import Volume as vp | ||
|
||
def findIndex(vol,thres): | ||
l = len(vol) | ||
ii = 0 | ||
index = np.zeros(4,dtype=np.int16) | ||
for i in range(l-1): | ||
if((vol[i]-thres)*(vol[i+1]-thres)<0): | ||
index[ii]=i | ||
ii = ii+1 | ||
return index[[0,-1]] | ||
|
||
fw = wave.open('../sounds/sunday.wav','r') | ||
params = fw.getparams() | ||
nchannels, sampwidth, framerate, nframes = params[:4] | ||
strData = fw.readframes(nframes) | ||
waveData = np.fromstring(strData, dtype=np.int16) | ||
waveData = waveData*1.0/max(abs(waveData)) # normalization | ||
fw.close() | ||
|
||
frameSize = 256 | ||
overLap = 128 | ||
vol = vp.calVolume(waveData,frameSize,overLap) | ||
threshold1 = max(vol)*0.10 | ||
threshold2 = min(vol)*10.0 | ||
threshold3 = max(vol)*0.05+min(vol)*5.0 | ||
|
||
time = np.arange(0,nframes) * (1.0/framerate) | ||
vols = np.arange(0,len(vol)) * (nframes*1.0/len(vol)/framerate) | ||
index1 = findIndex(vol,threshold1)*(nframes*1.0/len(vol)/framerate) | ||
index2 = findIndex(vol,threshold2)*(nframes*1.0/len(vol)/framerate) | ||
index3 = findIndex(vol,threshold3)*(nframes*1.0/len(vol)/framerate) | ||
end = nframes * (1.0/framerate) | ||
|
||
plt.subplot(211) | ||
plt.title("VAD01 using volume") | ||
plt.plot(time,waveData,color="black") | ||
plt.plot([index1,index1],[-1,1],'-r') | ||
plt.plot([index2,index2],[-1,1],'-g') | ||
plt.plot([index3,index3],[-1,1],'-b') | ||
plt.ylabel('Amplitude') | ||
|
||
plt.subplot(212) | ||
plt.plot(vols,vol,color="black") | ||
plt.plot([0,end],[threshold1,threshold1],'-r', label="threshold 1") | ||
plt.plot([0,end],[threshold2,threshold2],'-g', label="threshold 2") | ||
plt.plot([0,end],[threshold3,threshold3],'-b', label="threshold 3") | ||
plt.legend() | ||
plt.ylabel('Volume(absSum)') | ||
plt.xlabel('time(seconds)') | ||
plt.savefig("VAD01") | ||
plt.show() |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
import wave | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import Volume as vp | ||
from ZeroCR import ZeroCR | ||
|
||
fw = wave.open('../sounds/sunday.wav','r') | ||
params = fw.getparams() | ||
nchannels, sampwidth, framerate, nframes = params[:4] | ||
strData = fw.readframes(nframes) | ||
waveData = np.fromstring(strData, dtype=np.int16) | ||
waveData = waveData*1.0/max(abs(waveData)) # normalization | ||
fw.close() | ||
|
||
frameSize = 256 | ||
overLap = 128 | ||
vol = vp.calVolume(waveData,frameSize,overLap) | ||
zcr = ZeroCR(waveData,frameSize,overLap) | ||
threshold1 = max(vol)*0.10 | ||
threshold2 = min(vol)*10.0 | ||
threshold3 = max(vol)*0.05+min(vol)*5.0 | ||
threshold12 = max(zcr)*0.10 | ||
threshold22 = min(zcr)*10.0 | ||
threshold32 = max(zcr)*0.05+min(zcr)*5.0 | ||
|
||
time = np.arange(0,nframes) * (1.0/framerate) | ||
vols = np.arange(0,len(vol)) * (nframes*1.0/len(vol)/framerate) | ||
zcrs = np.arange(0,len(zcr))*(nframes*1.0/len(zcr)/framerate) | ||
end = nframes * (1.0/framerate) | ||
plt.subplot(311) | ||
plt.title("VAD02 using volume and ZeroCR") | ||
plt.plot(time,waveData,color="black") | ||
plt.ylabel('Amplitude') | ||
|
||
plt.subplot(312) | ||
plt.plot(vols,vol,color="black") | ||
plt.plot([0,end],[threshold1,threshold1],'-r', label="threshold 1") | ||
plt.plot([0,end],[threshold2,threshold2],'-g', label="threshold 2") | ||
plt.plot([0,end],[threshold3,threshold3],'-b', label="threshold 3") | ||
plt.legend() | ||
plt.ylabel('Volume(absSum)') | ||
|
||
plt.subplot(313) | ||
plt.plot(zcrs,zcr,color="black") | ||
plt.plot([0,end],[threshold12,threshold12],'-r', label="threshold 12") | ||
plt.plot([0,end],[threshold22,threshold22],'-g', label="threshold 22") | ||
plt.plot([0,end],[threshold32,threshold32],'-b', label="threshold 32") | ||
plt.legend() | ||
plt.ylabel('Zero-Crossing Rate') | ||
plt.xlabel('time(seconds)') | ||
plt.savefig("VAD02") | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
import math | ||
import numpy as np | ||
|
||
# method 1: absSum | ||
def calVolume(waveData, frameSize, overLap): | ||
wlen = len(waveData) | ||
step = frameSize - overLap | ||
frameNum = int(math.ceil(wlen*1.0/step)) | ||
volume = np.zeros((frameNum,1)) | ||
for i in range(frameNum): | ||
curFrame = waveData[np.arange(i*step,min(i*step+frameSize,wlen))] | ||
#curFrame = curFrame - np.median(curFrame) # False | ||
curFrame = curFrame - np.mean(curFrame) # zero-justified | ||
volume[i] = np.sum(np.abs(curFrame)) | ||
return volume | ||
|
||
# method 2: log10 of square sum | ||
def calVolumeDB(waveData, frameSize, overLap): | ||
wlen = len(waveData) | ||
step = frameSize - overLap | ||
frameNum = int(math.ceil(wlen*1.0/step)) | ||
volume = np.zeros((frameNum,1)) | ||
for i in range(frameNum): | ||
curFrame = waveData[np.arange(i*step,min(i*step+frameSize,wlen))] | ||
curFrame = curFrame - np.mean(curFrame) # zero-justified | ||
volume[i] = 10*np.log10(np.sum(curFrame*curFrame)) | ||
return volume |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
import math | ||
import numpy as np | ||
|
||
def ZeroCR(waveData,frameSize,overLap): | ||
wlen = len(waveData) | ||
step = frameSize - overLap | ||
frameNum = int(math.ceil(wlen*1.0/step)) | ||
zcr = np.zeros((frameNum,1)) | ||
for i in range(frameNum): | ||
curFrame = waveData[np.arange(i*step, min(i*step+frameSize,wlen))] | ||
#To avoid DC bias, usually we need to perform mean subtraction on each frame | ||
curFrame = curFrame - np.mean(curFrame) # zero-justified | ||
zcr[i] = sum(curFrame[0:-1]*curFrame[1:]<=0) | ||
return zcr |