Skip to content

In the Linux kernel, the following vulnerability has been...

High severity Unreviewed Published Feb 10, 2025 to the GitHub Advisory Database • Updated Feb 10, 2025

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

mm: zswap: properly synchronize freeing resources during CPU hotunplug

In zswap_compress() and zswap_decompress(), the per-CPU acomp_ctx of the
current CPU at the beginning of the operation is retrieved and used
throughout. However, since neither preemption nor migration are disabled,
it is possible that the operation continues on a different CPU.

If the original CPU is hotunplugged while the acomp_ctx is still in use,
we run into a UAF bug as some of the resources attached to the acomp_ctx
are freed during hotunplug in zswap_cpu_comp_dead() (i.e.
acomp_ctx.buffer, acomp_ctx.req, or acomp_ctx.acomp).

The problem was introduced in commit 1ec3b5fe6eec ("mm/zswap: move to use
crypto_acomp API for hardware acceleration") when the switch to the
crypto_acomp API was made. Prior to that, the per-CPU crypto_comp was
retrieved using get_cpu_ptr() which disables preemption and makes sure the
CPU cannot go away from under us. Preemption cannot be disabled with the
crypto_acomp API as a sleepable context is needed.

Use the acomp_ctx.mutex to synchronize CPU hotplug callbacks allocating
and freeing resources with compression/decompression paths. Make sure
that acomp_ctx.req is NULL when the resources are freed. In the
compression/decompression paths, check if acomp_ctx.req is NULL after
acquiring the mutex (meaning the CPU was offlined) and retry on the new
CPU.

The initialization of acomp_ctx.mutex is moved from the CPU hotplug
callback to the pool initialization where it belongs (where the mutex is
allocated). In addition to adding clarity, this makes sure that CPU
hotplug cannot reinitialize a mutex that is already locked by
compression/decompression.

Previously a fix was attempted by holding cpus_read_lock() [1]. This
would have caused a potential deadlock as it is possible for code already
holding the lock to fall into reclaim and enter zswap (causing a
deadlock). A fix was also attempted using SRCU for synchronization, but
Johannes pointed out that synchronize_srcu() cannot be used in CPU hotplug
notifiers [2].

Alternative fixes that were considered/attempted and could have worked:

  • Refcounting the per-CPU acomp_ctx. This involves complexity in
    handling the race between the refcount dropping to zero in
    zswap_[de]compress() and the refcount being re-initialized when the
    CPU is onlined.
  • Disabling migration before getting the per-CPU acomp_ctx [3], but
    that's discouraged and is a much bigger hammer than needed, and could
    result in subtle performance issues.

[1]https://lkml.kernel.org/[email protected]/
[2]https://lkml.kernel.org/[email protected]/
[3]https://lkml.kernel.org/[email protected]/

[[email protected]: remove comment]
Link: https://lkml.kernel.org/r/CAJD7tkaxS1wjn+swugt8QCvQ-rVF5RZnjxwPGX17k8x9zSManA@mail.gmail.com

References

Published by the National Vulnerability Database Feb 10, 2025
Published to the GitHub Advisory Database Feb 10, 2025
Last updated Feb 10, 2025

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(2nd percentile)

Weaknesses

CVE ID

CVE-2025-21693

GHSA ID

GHSA-jqr2-rwpf-xrf3

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

See something to contribute? Suggest improvements for this vulnerability.