This project aims to develop an artificial intelligence (AI) model capable of recognizing hand gestures in sign language and translating them into text. The primary objective is to create a tool that enhances communication and interaction for individuals who use sign language as their primary means of communication.
Our model utilizes convolutional layers for feature extraction from hand gesture images, followed by MaxPooling to downsample and preserve key features. Dense layers integrate learned features for gesture classification, enhanced by dropout regularization to prevent overfitting. The final layer employs a sigmoid activation function for multi-label classification, enabling accurate recognition of diverse sign language gestures in real-time applications.
- RMSprop
- Adam
- Adadelta
- Adagrad
index | Optimizer | Activation Function | Train Loss | Train Accuracy | Train Precision | Train Recall | Val Loss | Val Accuracy | Val Precision | Val Recall | Epoch |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Adam | relu | 3.167072296142578 | 0.08137045055627823 | 0.05069601163268089 | 0.6925053596496582 | 3.0823893547058105 | 0.06793206930160522 | 0.05317637324333191 | 0.7852147817611694 | 10.0 |
0 | RMSprop | relu | 3.276334524154663 | 0.05781584605574608 | 0.039583563804626465 | 0.6089935898780823 | 3.252866506576538 | 0.05494505539536476 | 0.03919634968042374 | 0.6353646516799927 | 10.0 |
2 | Adadelta | relu | 4.150864601135254 | 0.03768736496567726 | 0.03849301114678383 | 0.5036402344703674 | 3.478652000427246 | 0.037962038069963455 | 0.03810686990618706 | 0.6233766078948975 | 10.0 |
3 | Adagrad | relu | 3.9087071418762207 | 0.05224839225411415 | 0.04018346965312958 | 0.5177730321884155 | 3.3669395446777344 | 0.03696303814649582 | 0.04011571779847145 | 0.41558441519737244 | 10.0 |
- relu
- sigmoid
- softmax
- tanh
- softsign
- selu
- elu
index | Optimizer | Activation Function | Train Loss | Train Accuracy | Train Precision | Train Recall | Val Loss | Val Accuracy | Val Precision | Val Recall | Epoch |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | RMSprop | sigmoid | 3.4386680126190186 | 0.0389721617102623 | 0.039464663714170456 | 0.5177730321884155 | 3.715771198272705 | 0.03496503457427025 | 0.03822120279073715 | 0.3666333556175232 | 5.0 |
0 | RMSprop | relu | 3.4081802368164062 | 0.04796573892235756 | 0.04040905833244324 | 0.5922912359237671 | 3.257030487060547 | 0.039960041642189026 | 0.038627129048109055 | 0.9590409398078918 | 5.0 |
5 | RMSprop | selu | 3.414308547973633 | 0.04282655194401741 | 0.03918248787522316 | 0.5550321340560913 | 3.354295015335083 | 0.05294705182313919 | 0.038730546832084656 | 0.4425574541091919 | 5.0 |
3 | RMSprop | tanh | 3.4315335750579834 | 0.04282655194401741 | 0.03871742635965347 | 0.5383297801017761 | 8.03565788269043 | 0.04595404490828514 | 0.0 | 0.0 | 5.0 |
6 | RMSprop | elu | 3.403385877609253 | 0.04411134868860245 | 0.040213149040937424 | 0.5558886528015137 | 12.560569763183594 | 0.03196803107857704 | 0.02610441856086254 | 0.012987012974917889 | 5.0 |
After analyzing different optimizers and activation functions, the model selected for deployment uses RMSprop optimizer with relu activation function based on the following metrics:
- Train Loss: 3.244080
- Train Accuracy: 0.067666
- Train Precision: 0.041408
- Train Recall: 0.610707
- Val Loss: 3.199470
- Val Accuracy: 0.072927
- Val Precision: 0.039833
- Val Recall: 0.677323
This configuration was chosen for its balanced performance in training and validation phases.