Skip to content

Yash-S07/Hand_gesture_recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hand Gesture Recognition for Sign Language

This project aims to develop an artificial intelligence (AI) model capable of recognizing hand gestures in sign language and translating them into text. The primary objective is to create a tool that enhances communication and interaction for individuals who use sign language as their primary means of communication.

Key Objectives:

  • Gesture Recognition: Train a deep learning model to accurately recognize and classify hand gestures commonly used in sign language.
  • Real-time Translation: Develop the capability to translate recognized gestures into text instantaneously, enabling seamless communication.
  • User Interface: Create a user-friendly interface that allows users to interact with the system easily, providing both input via gestures and output via text.
  • Machine Learning ands Deep Learning Frameworks used:

  • Tensorflow
  • Scikit-learn
  • Numpy,Pandas
  • Plotly
  • Model Architecture

    Our model utilizes convolutional layers for feature extraction from hand gesture images, followed by MaxPooling to downsample and preserve key features. Dense layers integrate learned features for gesture classification, enhanced by dropout regularization to prevent overfitting. The final layer employs a sigmoid activation function for multi-label classification, enabling accurate recognition of diverse sign language gestures in real-time applications.

    Optimizers Used:

    • RMSprop
    • Adam
    • Adadelta
    • Adagrad

    Results:

    index Optimizer Activation Function Train Loss Train Accuracy Train Precision Train Recall Val Loss Val Accuracy Val Precision Val Recall Epoch
    1 Adam relu 3.167072296142578 0.08137045055627823 0.05069601163268089 0.6925053596496582 3.0823893547058105 0.06793206930160522 0.05317637324333191 0.7852147817611694 10.0
    0 RMSprop relu 3.276334524154663 0.05781584605574608 0.039583563804626465 0.6089935898780823 3.252866506576538 0.05494505539536476 0.03919634968042374 0.6353646516799927 10.0
    2 Adadelta relu 4.150864601135254 0.03768736496567726 0.03849301114678383 0.5036402344703674 3.478652000427246 0.037962038069963455 0.03810686990618706 0.6233766078948975 10.0
    3 Adagrad relu 3.9087071418762207 0.05224839225411415 0.04018346965312958 0.5177730321884155 3.3669395446777344 0.03696303814649582 0.04011571779847145 0.41558441519737244 10.0

    Activation Functions Tested:

    • relu
    • sigmoid
    • softmax
    • tanh
    • softsign
    • selu
    • elu

    Results for RMSprop Optimizer:

    index Optimizer Activation Function Train Loss Train Accuracy Train Precision Train Recall Val Loss Val Accuracy Val Precision Val Recall Epoch
    1 RMSprop sigmoid 3.4386680126190186 0.0389721617102623 0.039464663714170456 0.5177730321884155 3.715771198272705 0.03496503457427025 0.03822120279073715 0.3666333556175232 5.0
    0 RMSprop relu 3.4081802368164062 0.04796573892235756 0.04040905833244324 0.5922912359237671 3.257030487060547 0.039960041642189026 0.038627129048109055 0.9590409398078918 5.0
    5 RMSprop selu 3.414308547973633 0.04282655194401741 0.03918248787522316 0.5550321340560913 3.354295015335083 0.05294705182313919 0.038730546832084656 0.4425574541091919 5.0
    3 RMSprop tanh 3.4315335750579834 0.04282655194401741 0.03871742635965347 0.5383297801017761 8.03565788269043 0.04595404490828514 0.0 0.0 5.0
    6 RMSprop elu 3.403385877609253 0.04411134868860245 0.040213149040937424 0.5558886528015137 12.560569763183594 0.03196803107857704 0.02610441856086254 0.012987012974917889 5.0

    Final Model (RMSprop with relu)

    After analyzing different optimizers and activation functions, the model selected for deployment uses RMSprop optimizer with relu activation function based on the following metrics:

    • Train Loss: 3.244080
    • Train Accuracy: 0.067666
    • Train Precision: 0.041408
    • Train Recall: 0.610707
    • Val Loss: 3.199470
    • Val Accuracy: 0.072927
    • Val Precision: 0.039833
    • Val Recall: 0.677323

    This configuration was chosen for its balanced performance in training and validation phases.

    plot

    plot

    About

    No description, website, or topics provided.

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published