-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
23b5364
commit 5a9e003
Showing
13 changed files
with
1,679 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import torch | ||
# from ptflops import get_model_complexity_info | ||
# from model import NetworkCIFAR as Network | ||
from thop import profile | ||
from model_search import Network as Network | ||
from model import NetworkCIFAR as Network_CIFAR | ||
import genotypes | ||
|
||
# torch.cuda.set_device(0) | ||
init_channels = 36 | ||
CIFAR_CLASSES = 10 | ||
layers = 20 | ||
auxiliary = True | ||
input = torch.randn(1, 3, 32, 32) | ||
# input = input.cuda() | ||
genotype = eval("genotypes.%s" % 'SWD_NAS') | ||
|
||
# genotype = eval("Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 0), ('skip_connect', 0), ('dil_conv_5x5', 2)], normal_concat=range(2, 6), reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2), ('max_pool_3x3', 0), ('max_pool_3x3', 0), ('skip_connect', 2), ('skip_connect', 2), ('avg_pool_3x3', 1)], reduce_concat=range(2, 6))") | ||
|
||
criterion = torch.nn.CrossEntropyLoss() | ||
criterion = criterion.cuda() | ||
|
||
with torch.cuda.device(0): | ||
model = Network_CIFAR(init_channels, CIFAR_CLASSES, layers, auxiliary, genotype) | ||
# net = Network(init_channels, CIFAR_CLASSES, layers, criterion) | ||
# model = model.cuda() | ||
model.drop_path_prob = 0.2 | ||
flops, params = profile(model, inputs=(input,)) | ||
# macs, params = get_model_complexity_info(net, (3, 32, 32), as_strings=True, | ||
# print_per_layer_stat=True, verbose=True) | ||
print(f"FLOPs: {flops / 1e6} M FLOPs") | ||
print(f"Number of Parameters: {params}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
from collections import namedtuple | ||
|
||
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat') | ||
Normal_Genotype = namedtuple('Normal_Genotype', 'normal normal_concat') | ||
Reduce_Genotype = namedtuple('Reduce_Genotype', 'reduce reduce_concat') | ||
|
||
PARAMS = {'conv_3x1_1x3':864, 'conv_7x1_1x7':2016, 'sep_conv_7x7': 1464, 'conv 3x3':1296, 'sep_conv_5x5': 888, 'sep_conv_3x3':504, 'dil_conv_5x5': 444, 'conv 1x1':144, 'dil_conv_3x3':252, 'skip_connect':0, 'none':0, 'max_pool_3x3':0, 'avg_pool_3x3':0} | ||
|
||
PRIMITIVES = [ | ||
'sep_conv_3x3', | ||
'sep_conv_5x5', | ||
'dil_conv_3x3', | ||
'dil_conv_5x5', | ||
'skip_connect', | ||
'avg_pool_3x3', | ||
'max_pool_3x3', | ||
'none' | ||
] | ||
|
||
NASNet = Genotype( | ||
normal = [ | ||
('sep_conv_5x5', 1), | ||
('sep_conv_3x3', 0), | ||
('sep_conv_5x5', 0), | ||
('sep_conv_3x3', 0), | ||
('avg_pool_3x3', 1), | ||
('skip_connect', 0), | ||
('avg_pool_3x3', 0), | ||
('avg_pool_3x3', 0), | ||
('sep_conv_3x3', 1), | ||
('skip_connect', 1), | ||
], | ||
normal_concat = [2, 3, 4, 5, 6], | ||
reduce = [ | ||
('sep_conv_5x5', 1), | ||
('sep_conv_7x7', 0), | ||
('max_pool_3x3', 1), | ||
('sep_conv_7x7', 0), | ||
('avg_pool_3x3', 1), | ||
('sep_conv_5x5', 0), | ||
('skip_connect', 3), | ||
('avg_pool_3x3', 2), | ||
('sep_conv_3x3', 2), | ||
('max_pool_3x3', 1), | ||
], | ||
reduce_concat = [4, 5, 6], | ||
) | ||
|
||
AmoebaNet = Genotype( | ||
normal = [ | ||
('avg_pool_3x3', 0), | ||
('max_pool_3x3', 1), | ||
('sep_conv_3x3', 0), | ||
('sep_conv_5x5', 2), | ||
('sep_conv_3x3', 0), | ||
('avg_pool_3x3', 3), | ||
('sep_conv_3x3', 1), | ||
('skip_connect', 1), | ||
('skip_connect', 0), | ||
('avg_pool_3x3', 1), | ||
], | ||
normal_concat = [4, 5, 6], | ||
reduce = [ | ||
('avg_pool_3x3', 0), | ||
('sep_conv_3x3', 1), | ||
('max_pool_3x3', 0), | ||
('sep_conv_7x7', 2), | ||
('sep_conv_7x7', 0), | ||
('avg_pool_3x3', 1), | ||
('max_pool_3x3', 0), | ||
('max_pool_3x3', 1), | ||
('conv_7x1_1x7', 0), | ||
('sep_conv_3x3', 5), | ||
], | ||
reduce_concat = [3, 4, 6] | ||
) | ||
|
||
DARTS_V1 = Genotype(normal=[('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 0), ('sep_conv_3x3', 1), ('skip_connect', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 2)], normal_concat=[2, 3, 4, 5], reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2), ('max_pool_3x3', 0), ('max_pool_3x3', 0), ('skip_connect', 2), ('skip_connect', 2), ('avg_pool_3x3', 0)], reduce_concat=[2, 3, 4, 5]) | ||
DARTS_V2 = Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 1), ('skip_connect', 0), ('skip_connect', 0), ('dil_conv_3x3', 2)], normal_concat=[2, 3, 4, 5], reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2), ('max_pool_3x3', 1), ('max_pool_3x3', 0), ('skip_connect', 2), ('skip_connect', 2), ('max_pool_3x3', 1)], reduce_concat=[2, 3, 4, 5]) | ||
|
||
DARTS = DARTS_V1 | ||
|
||
Cell_0 = Normal_Genotype(normal=[('sep_conv_3x3', 0), ('dil_conv_3x3', 1), ('dil_conv_5x5', 0), ('skip_connect', 1), ('sep_conv_3x3', 0), ('sep_conv_5x5', 3), ('dil_conv_5x5', 0), ('sep_conv_3x3', 3)], normal_concat=range(2, 6)) | ||
Cell_1 = Reduce_Genotype(reduce=[('max_pool_3x3', 0), ('sep_conv_5x5', 1), ('skip_connect', 0), ('sep_conv_5x5', 1), ('max_pool_3x3', 0), ('skip_connect', 1), ('sep_conv_5x5', 0), ('sep_conv_3x3', 1)], reduce_concat=range(2, 6)) | ||
Cell_2 = Normal_Genotype(normal=[('skip_connect', 0), ('sep_conv_3x3', 1), ('dil_conv_5x5', 0), ('sep_conv_3x3', 1), ('dil_conv_3x3', 0), ('sep_conv_5x5', 1), ('sep_conv_3x3', 1), ('dil_conv_5x5', 4)], normal_concat=range(2, 6)) | ||
Cell_3 = Reduce_Genotype(reduce=[('skip_connect', 1), ('skip_connect', 0), ('dil_conv_3x3', 1), ('dil_conv_3x3', 0), ('avg_pool_3x3', 0), ('max_pool_3x3', 1), ('avg_pool_3x3', 0), ('max_pool_3x3', 1)], reduce_concat=range(2, 6)) | ||
Cell_4 = Normal_Genotype(normal=[('skip_connect', 0), ('dil_conv_5x5', 1), ('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_5x5', 0), ('max_pool_3x3', 2), ('sep_conv_5x5', 0), ('sep_conv_3x3', 1)], normal_concat=range(2, 6)) | ||
|
||
Cell_0 = Normal_Genotype(normal=[('skip_connect', 0), ('sep_conv_5x5', 1), ('max_pool_3x3', 0), ('dil_conv_3x3', 1), ('sep_conv_3x3', 0), ('dil_conv_5x5', 1), ('sep_conv_5x5', 0), ('avg_pool_3x3', 1)], normal_concat=range(2, 6)) | ||
Cell_1 = Reduce_Genotype(reduce=[('dil_conv_3x3', 0), ('dil_conv_3x3', 1), ('max_pool_3x3', 0), ('sep_conv_5x5', 1), ('dil_conv_3x3', 1), ('sep_conv_5x5', 3), ('sep_conv_5x5', 0), ('skip_connect', 1)], reduce_concat=range(2, 6)) | ||
Cell_2 = Normal_Genotype(normal=[('skip_connect', 0), ('sep_conv_3x3', 1), ('avg_pool_3x3', 0), ('sep_conv_3x3', 2), ('sep_conv_5x5', 0), ('sep_conv_3x3', 1), ('avg_pool_3x3', 0), ('skip_connect', 1)], normal_concat=range(2, 6)) | ||
Cell_3 = Reduce_Genotype(reduce=[('avg_pool_3x3', 0), ('sep_conv_3x3', 1), ('skip_connect', 0), ('avg_pool_3x3', 1), ('dil_conv_3x3', 0), ('dil_conv_3x3', 1), ('sep_conv_3x3', 0), ('dil_conv_5x5', 1)], reduce_concat=range(2, 6)) | ||
Cell_4 = Normal_Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_5x5', 1), ('skip_connect', 0), ('skip_connect', 1), ('sep_conv_5x5', 0), ('dil_conv_5x5', 1), ('dil_conv_5x5', 0), ('max_pool_3x3', 1)], normal_concat=range(2, 6)) | ||
|
||
SWD_NAS = [Cell_0, Cell_1, Cell_2, Cell_3, Cell_4] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
import torch | ||
from model_search import Network as Network | ||
|
||
iteration = 50 | ||
model = Network(16, 10, 5, None) | ||
# model = model.cuda() | ||
|
||
input = torch.randn(1, 3, 32, 32) | ||
# input = input.cuda() | ||
|
||
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) | ||
for _ in range(50): | ||
_ = model(input) | ||
|
||
times = torch.zeros(iteration) | ||
with torch.no_grad(): | ||
for iter in range(iteration): | ||
starter.record() | ||
_ = model(input) | ||
ender.record() | ||
# Waits for everything to finish running | ||
torch.cuda.synchronize() | ||
times[iter] = starter.elapsed_time(ender) | ||
|
||
mean_time = times.mean().item() | ||
print("Inference time: {:.6f}, FPS: {} ".format(mean_time, 1000 / mean_time)) | ||
|
Oops, something went wrong.