|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "f04dd603-a2d1-48ce-8c17-9f1dba8de1ee", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Chapter 05\n", |
| 9 | + "\n", |
| 10 | + "# 2 x 2矩阵求逆\n", |
| 11 | + "《线性代数》 | 鸢尾花书:数学不难" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "id": "ccafb456-2453-4c82-8a65-b1963a370cb2", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "这段代码的主要目标是计算一个 $2 \\times 2$ 矩阵的逆矩阵。假设我们有矩阵:\n", |
| 20 | + "\n", |
| 21 | + "$$\n", |
| 22 | + "A = \\begin{bmatrix} a & b \\\\ c & d \\end{bmatrix}\n", |
| 23 | + "$$\n", |
| 24 | + "\n", |
| 25 | + "要计算 $A$ 的逆矩阵 $A^{-1}$,首先需要计算矩阵的 **行列式**(determinant)。行列式是一个标量值,它用于判断矩阵是否可逆,计算公式如下:\n", |
| 26 | + "\n", |
| 27 | + "$$\n", |
| 28 | + "\\det(A) = ad - bc\n", |
| 29 | + "$$\n", |
| 30 | + "\n", |
| 31 | + "如果 $\\det(A) = 0$,那么矩阵是**不可逆的**,即不存在 $A^{-1}$。在代码中,这一步通过 `det = a * d - b * c` 计算,并用 `if det == 0:` 判断是否可逆。如果行列式为零,函数会打印 \"矩阵不可逆,行列式为零\",并返回 `None`,终止计算。\n", |
| 32 | + "\n", |
| 33 | + "如果矩阵是可逆的,即 $\\det(A) \\neq 0$,则可以按照标准公式计算逆矩阵:\n", |
| 34 | + "\n", |
| 35 | + "$$\n", |
| 36 | + "A^{-1} = \\frac{1}{\\det(A)} \\begin{bmatrix} d & -b \\\\ -c & a \\end{bmatrix}\n", |
| 37 | + "$$\n", |
| 38 | + "\n", |
| 39 | + "在代码中,首先创建矩阵:\n", |
| 40 | + "\n", |
| 41 | + "$$\n", |
| 42 | + "\\begin{bmatrix} d & -b \\\\ -c & a \\end{bmatrix}\n", |
| 43 | + "$$\n", |
| 44 | + "\n", |
| 45 | + "然后,将其除以 $\\det(A)$ 来得到最终的逆矩阵。这一步在代码里是 `inv_A = np.array([[d, -b], [-c, a]]) / det`。\n", |
| 46 | + "\n", |
| 47 | + "代码示例中,矩阵 $A$ 被定义为:\n", |
| 48 | + "\n", |
| 49 | + "$$\n", |
| 50 | + "A = \\begin{bmatrix} 1 & 2 \\\\ 3 & 4 \\end{bmatrix}\n", |
| 51 | + "$$\n", |
| 52 | + "\n", |
| 53 | + "其行列式计算如下:\n", |
| 54 | + "\n", |
| 55 | + "$$\n", |
| 56 | + "\\det(A) = (1 \\times 4) - (2 \\times 3) = 4 - 6 = -2\n", |
| 57 | + "$$\n", |
| 58 | + "\n", |
| 59 | + "因此,$A$ 是可逆的,按照逆矩阵公式计算:\n", |
| 60 | + "\n", |
| 61 | + "$$\n", |
| 62 | + "A^{-1} = \\frac{1}{-2} \\begin{bmatrix} 4 & -2 \\\\ -3 & 1 \\end{bmatrix}\n", |
| 63 | + "= \\begin{bmatrix} -2 & 1 \\\\ 1.5 & -0.5 \\end{bmatrix}\n", |
| 64 | + "$$\n", |
| 65 | + "\n", |
| 66 | + "最终,`inverse_2x2_A(A)` 计算并返回了这个逆矩阵。该方法利用 `numpy` 进行矩阵运算,并确保只对可逆矩阵进行计算,从而避免错误。" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "markdown", |
| 71 | + "id": "b7998c9a-044c-4308-b809-c7458b33a48b", |
| 72 | + "metadata": {}, |
| 73 | + "source": [ |
| 74 | + "## 初始化" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": 4, |
| 80 | + "id": "d530bc5e-a5b5-41cf-92e4-461541be8fc2", |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "import numpy as np" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "markdown", |
| 89 | + "id": "fd8fe07d-9741-4d49-bc75-4292daf3790b", |
| 90 | + "metadata": {}, |
| 91 | + "source": [ |
| 92 | + "## 自定义函数" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": 6, |
| 98 | + "id": "ad0dd3b8-1858-4362-82f0-c17ff891d911", |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "def inverse_2x2_A(A):\n", |
| 103 | + " \"\"\"\n", |
| 104 | + " A = [[a, b],\n", |
| 105 | + " [c, d]]\n", |
| 106 | + " \"\"\"\n", |
| 107 | + " # 提取矩阵元素\n", |
| 108 | + " a, b = A[0]\n", |
| 109 | + " c, d = A[1]\n", |
| 110 | + " \n", |
| 111 | + " # 计算行列式 det(A) = ad - bc\n", |
| 112 | + " det = a * d - b * c\n", |
| 113 | + " \n", |
| 114 | + " # 判断行列式是否为零\n", |
| 115 | + " if det == 0:\n", |
| 116 | + " print(\"矩阵不可逆,行列式为零\")\n", |
| 117 | + " return None\n", |
| 118 | + " \n", |
| 119 | + " # 计算逆矩阵\n", |
| 120 | + " inv_A = np.array([[d, -b], [-c, a]]) / det\n", |
| 121 | + " return inv_A" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "markdown", |
| 126 | + "id": "5905d558-ffac-4737-868f-7c9b665aeab0", |
| 127 | + "metadata": {}, |
| 128 | + "source": [ |
| 129 | + "## 定义矩阵" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "code", |
| 134 | + "execution_count": 8, |
| 135 | + "id": "1e029681-047b-42b1-9f57-6476396e95a8", |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [ |
| 138 | + { |
| 139 | + "data": { |
| 140 | + "text/plain": [ |
| 141 | + "array([[1, 2],\n", |
| 142 | + " [3, 4]])" |
| 143 | + ] |
| 144 | + }, |
| 145 | + "execution_count": 8, |
| 146 | + "metadata": {}, |
| 147 | + "output_type": "execute_result" |
| 148 | + } |
| 149 | + ], |
| 150 | + "source": [ |
| 151 | + "A = [[1, 2], \n", |
| 152 | + " [3, 4]] # 示例矩阵\n", |
| 153 | + "A = np.array(A)\n", |
| 154 | + "A" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "markdown", |
| 159 | + "id": "50736aaa-bc64-46c9-9527-8dce6b0ba101", |
| 160 | + "metadata": {}, |
| 161 | + "source": [ |
| 162 | + "## 计算逆矩阵" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": 9, |
| 168 | + "id": "72553dc9-98d5-4509-ab4e-679c3668f3b3", |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [ |
| 171 | + { |
| 172 | + "data": { |
| 173 | + "text/plain": [ |
| 174 | + "array([[-2. , 1. ],\n", |
| 175 | + " [ 1.5, -0.5]])" |
| 176 | + ] |
| 177 | + }, |
| 178 | + "execution_count": 9, |
| 179 | + "metadata": {}, |
| 180 | + "output_type": "execute_result" |
| 181 | + } |
| 182 | + ], |
| 183 | + "source": [ |
| 184 | + "inverse_2x2_A(A)" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "code", |
| 189 | + "execution_count": null, |
| 190 | + "id": "d86b9119-2028-4797-8c3e-6c7af8fd2995", |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": null, |
| 198 | + "id": "9eac7716-a90e-4c76-ac0f-c81c864dd073", |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [], |
| 201 | + "source": [] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": null, |
| 206 | + "id": "3886cb7b-972c-4347-9b6b-f66c8de25cbb", |
| 207 | + "metadata": {}, |
| 208 | + "outputs": [], |
| 209 | + "source": [] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "markdown", |
| 213 | + "id": "070c3389-8048-43a3-baa7-6666009bce96", |
| 214 | + "metadata": {}, |
| 215 | + "source": [ |
| 216 | + "作者\t**生姜DrGinger** \n", |
| 217 | + "脚本\t**生姜DrGinger** \n", |
| 218 | + "视频\t**崔崔CuiCui** \n", |
| 219 | + "开源资源\t[**GitHub**](https://github.com/Visualize-ML) \n", |
| 220 | + "平台\t[**油管**](https://www.youtube.com/@DrGinger_Jiang)\t\t\n", |
| 221 | + "\t\t[**iris小课堂**](https://space.bilibili.com/3546865719052873)\t\t\n", |
| 222 | + "\t\t[**生姜DrGinger**](https://space.bilibili.com/513194466) " |
| 223 | + ] |
| 224 | + } |
| 225 | + ], |
| 226 | + "metadata": { |
| 227 | + "kernelspec": { |
| 228 | + "display_name": "Python [conda env:base] *", |
| 229 | + "language": "python", |
| 230 | + "name": "conda-base-py" |
| 231 | + }, |
| 232 | + "language_info": { |
| 233 | + "codemirror_mode": { |
| 234 | + "name": "ipython", |
| 235 | + "version": 3 |
| 236 | + }, |
| 237 | + "file_extension": ".py", |
| 238 | + "mimetype": "text/x-python", |
| 239 | + "name": "python", |
| 240 | + "nbconvert_exporter": "python", |
| 241 | + "pygments_lexer": "ipython3", |
| 242 | + "version": "3.12.7" |
| 243 | + } |
| 244 | + }, |
| 245 | + "nbformat": 4, |
| 246 | + "nbformat_minor": 5 |
| 247 | +} |
0 commit comments