|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "f04dd603-a2d1-48ce-8c17-9f1dba8de1ee", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Chapter 04\n", |
| 9 | + "\n", |
| 10 | + "# 伴随矩阵法求解逆矩阵\n", |
| 11 | + "《线性代数》 | 鸢尾花书:数学不难" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "id": "ccafb456-2453-4c82-8a65-b1963a370cb2", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "该代码实现了计算矩阵的**行列式(determinant)**的方法,使用的是**Laplace展开(Laplace Expansion)**,即按某一行或某一列展开计算行列式。\n", |
| 20 | + "\n", |
| 21 | + "---\n", |
| 22 | + "\n", |
| 23 | + "### **1. 余子矩阵(Minor Matrix)**\n", |
| 24 | + "给定一个$n \\times n$矩阵 $A$,其某个元素 $A_{ij}$ 的**余子矩阵(minor matrix)** $M_{ij}$ 是删除该元素所在的第 $i$ 行和第 $j$ 列后得到的 $(n-1) \\times (n-1)$ 矩阵。代码中的 `get_minor(matrix, row, col)` 函数通过 `np.delete` 删除指定行和列来获取余子矩阵:\n", |
| 25 | + "\n", |
| 26 | + "$$\n", |
| 27 | + "M_{ij} = \\text{Minor}(A, i, j)\n", |
| 28 | + "$$\n", |
| 29 | + "\n", |
| 30 | + "---\n", |
| 31 | + "\n", |
| 32 | + "### **2. Laplace 展开计算行列式**\n", |
| 33 | + "对于 $n \\times n$ 矩阵 $A$,行列式 $\\det(A)$ 递归地按第一行展开(也可以按任意一行或一列展开,但本代码按第一行展开):\n", |
| 34 | + "\n", |
| 35 | + "$$\n", |
| 36 | + "\\det(A) = \\sum_{j=0}^{n-1} (-1)^j A_{0j} \\det(M_{0j})\n", |
| 37 | + "$$\n", |
| 38 | + "\n", |
| 39 | + "其中:\n", |
| 40 | + "- $A_{0j}$ 是矩阵 $A$ 第一行的第 $j$ 个元素。\n", |
| 41 | + "- $M_{0j}$ 是 $A_{0j}$ 对应的余子矩阵。\n", |
| 42 | + "- $(-1)^j$ 是交替的符号,用于计算**代数余子式(cofactor)**。\n", |
| 43 | + "\n", |
| 44 | + "代码中 `determinant(matrix)` 递归地调用自己来计算 $\\det(M_{0j})$,最终得到 $\\det(A)$。\n", |
| 45 | + "\n", |
| 46 | + "---\n", |
| 47 | + "\n", |
| 48 | + "### **3. 递归终止条件**\n", |
| 49 | + "在 `determinant(matrix)` 中:\n", |
| 50 | + "- 如果 $n=1$,即 $A$ 仅为 $1 \\times 1$ 矩阵,则 $\\det(A) = A_{00}$。\n", |
| 51 | + "- 如果 $n=2$,即 $A$ 为 $2 \\times 2$ 矩阵,则直接使用公式:\n", |
| 52 | + "\n", |
| 53 | + "$$\n", |
| 54 | + "\\det \\begin{bmatrix} a & b \\\\ c & d \\end{bmatrix} = ad - bc\n", |
| 55 | + "$$\n", |
| 56 | + "\n", |
| 57 | + "- 对于 $n \\geq 3$,使用 Laplace 展开进行递归计算。\n", |
| 58 | + "\n", |
| 59 | + "---\n", |
| 60 | + "\n", |
| 61 | + "### **4. 计算示例**\n", |
| 62 | + "给定矩阵:\n", |
| 63 | + "$$\n", |
| 64 | + "A = \\begin{bmatrix} 1 & 2 & 3 \\\\ 3 & 0 & 1 \\\\ 1 & 2 & 1 \\end{bmatrix}\n", |
| 65 | + "$$\n", |
| 66 | + "\n", |
| 67 | + "展开计算:\n", |
| 68 | + "1. 按第一行展开:\n", |
| 69 | + "\n", |
| 70 | + "$$\n", |
| 71 | + "\\det(A) = 1 \\cdot \\det \\begin{bmatrix} 0 & 1 \\\\ 2 & 1 \\end{bmatrix} - 2 \\cdot \\det \\begin{bmatrix} 3 & 1 \\\\ 1 & 1 \\end{bmatrix} + 3 \\cdot \\det \\begin{bmatrix} 3 & 0 \\\\ 1 & 2 \\end{bmatrix}\n", |
| 72 | + "$$\n", |
| 73 | + "\n", |
| 74 | + "2. 计算 $2 \\times 2$ 子矩阵的行列式:\n", |
| 75 | + "\n", |
| 76 | + "$$\n", |
| 77 | + "\\det \\begin{bmatrix} 0 & 1 \\\\ 2 & 1 \\end{bmatrix} = 0 \\cdot 1 - 1 \\cdot 2 = -2\n", |
| 78 | + "$$\n", |
| 79 | + "\n", |
| 80 | + "$$\n", |
| 81 | + "\\det \\begin{bmatrix} 3 & 1 \\\\ 1 & 1 \\end{bmatrix} = 3 \\cdot 1 - 1 \\cdot 1 = 2\n", |
| 82 | + "$$\n", |
| 83 | + "\n", |
| 84 | + "$$\n", |
| 85 | + "\\det \\begin{bmatrix} 3 & 0 \\\\ 1 & 2 \\end{bmatrix} = 3 \\cdot 2 - 0 \\cdot 1 = 6\n", |
| 86 | + "$$\n", |
| 87 | + "\n", |
| 88 | + "3. 代入计算:\n", |
| 89 | + "\n", |
| 90 | + "$$\n", |
| 91 | + "\\det(A) = 1 \\cdot (-2) - 2 \\cdot (2) + 3 \\cdot (6)\n", |
| 92 | + "$$\n", |
| 93 | + "\n", |
| 94 | + "$$\n", |
| 95 | + "\\det(A) = -2 - 4 + 18 = 12\n", |
| 96 | + "$$\n", |
| 97 | + "\n", |
| 98 | + "因此,最终的行列式结果为 **12**。\n", |
| 99 | + "\n", |
| 100 | + "---\n", |
| 101 | + "\n", |
| 102 | + "### **总结**\n", |
| 103 | + "- 代码实现了 **递归计算行列式**,基于 Laplace 展开,选择第一行进行展开计算。\n", |
| 104 | + "- 通过 `get_minor()` 计算余子矩阵,再通过递归调用 `determinant()` 计算行列式。\n", |
| 105 | + "- 终止条件:$1 \\times 1$ 或 $2 \\times 2$ 矩阵直接计算。\n", |
| 106 | + "- 计算复杂度为 $O(n!)$,随着矩阵大小增长,计算量呈指数增长,因此适用于小矩阵。\n", |
| 107 | + "\n", |
| 108 | + "最终,代码计算出矩阵 $A$ 的行列式值为 $12$。" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "id": "47bc7070-fd14-4a88-936f-85385266166e", |
| 114 | + "metadata": {}, |
| 115 | + "source": [ |
| 116 | + "## 初始化" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": 5, |
| 122 | + "id": "d7296ce6-de4d-4b77-b55d-e8e601f5e615", |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "import numpy as np" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "markdown", |
| 131 | + "id": "4cd29e1b-f98f-4088-b9ec-a50b5a406b4d", |
| 132 | + "metadata": {}, |
| 133 | + "source": [ |
| 134 | + "## 自定义函数,提取余子矩阵" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": 7, |
| 140 | + "id": "d29ff57c-b087-49b1-b8d9-fe561c5a4ac1", |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [], |
| 143 | + "source": [ |
| 144 | + "def cal_minor(A, row_idx, col_idx):\n", |
| 145 | + " A_ij = np.delete(np.delete(A, row_idx, axis=0), col_idx, axis=1)\n", |
| 146 | + " # 去掉指定的行、列\n", |
| 147 | + " return A_ij" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "markdown", |
| 152 | + "id": "0cc8393f-b473-4da4-8a4c-7ddcd17166d7", |
| 153 | + "metadata": {}, |
| 154 | + "source": [ |
| 155 | + "## 用Laplace展开递归计算行列式" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "code", |
| 160 | + "execution_count": 9, |
| 161 | + "id": "bcc5a135-f965-4792-9fcd-6f8d1fa68132", |
| 162 | + "metadata": {}, |
| 163 | + "outputs": [], |
| 164 | + "source": [ |
| 165 | + "def determinant(matrix):\n", |
| 166 | + "\n", |
| 167 | + " n = matrix.shape[0]\n", |
| 168 | + " if n == 1:\n", |
| 169 | + " return matrix[0, 0]\n", |
| 170 | + " if n == 2:\n", |
| 171 | + " return matrix[0, 0] * matrix[1, 1] - matrix[0, 1] * matrix[1, 0]\n", |
| 172 | + " \n", |
| 173 | + " det = 0\n", |
| 174 | + " for col_idx in range(n):\n", |
| 175 | + " minor = cal_minor(matrix, 0, col_idx) # 沿第一行展开\n", |
| 176 | + " cofactor = ((-1) ** col_idx) * determinant(minor) # 计算代数余子式\n", |
| 177 | + " # 相当于 (-1) ** ((col_idx + 1) + 1) = (-1) ** col_idx\n", |
| 178 | + " det += matrix[0, col] * cofactor # 计算行列式\n", |
| 179 | + " \n", |
| 180 | + " return det" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "markdown", |
| 185 | + "id": "e9771c69-eb08-4500-8184-fe90ab522720", |
| 186 | + "metadata": {}, |
| 187 | + "source": [ |
| 188 | + "## 测试" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": null, |
| 194 | + "id": "4d49d283-744e-4704-a121-243f5fc6c8c9", |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [ |
| 197 | + { |
| 198 | + "data": { |
| 199 | + "text/plain": [ |
| 200 | + "12" |
| 201 | + ] |
| 202 | + }, |
| 203 | + "execution_count": 10, |
| 204 | + "metadata": {}, |
| 205 | + "output_type": "execute_result" |
| 206 | + } |
| 207 | + ], |
| 208 | + "source": [ |
| 209 | + "A = np.array([[1, 2, 3], \n", |
| 210 | + " [3, 0, 1], \n", |
| 211 | + " [1, 2, 1]])\n", |
| 212 | + "A_det = determinant(A)\n", |
| 213 | + "A_det" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": null, |
| 219 | + "id": "954b7525-dcef-47cb-af13-40c741ca3891", |
| 220 | + "metadata": {}, |
| 221 | + "outputs": [], |
| 222 | + "source": [] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "markdown", |
| 226 | + "id": "070c3389-8048-43a3-baa7-6666009bce96", |
| 227 | + "metadata": {}, |
| 228 | + "source": [ |
| 229 | + "作者\t**生姜DrGinger** \n", |
| 230 | + "脚本\t**生姜DrGinger** \n", |
| 231 | + "视频\t**崔崔CuiCui** \n", |
| 232 | + "开源资源\t[**GitHub**](https://github.com/Visualize-ML) \n", |
| 233 | + "平台\t[**油管**](https://www.youtube.com/@DrGinger_Jiang)\t\t\n", |
| 234 | + "\t\t[**iris小课堂**](https://space.bilibili.com/3546865719052873)\t\t\n", |
| 235 | + "\t\t[**生姜DrGinger**](https://space.bilibili.com/513194466) " |
| 236 | + ] |
| 237 | + } |
| 238 | + ], |
| 239 | + "metadata": { |
| 240 | + "kernelspec": { |
| 241 | + "display_name": "Python [conda env:base] *", |
| 242 | + "language": "python", |
| 243 | + "name": "conda-base-py" |
| 244 | + }, |
| 245 | + "language_info": { |
| 246 | + "codemirror_mode": { |
| 247 | + "name": "ipython", |
| 248 | + "version": 3 |
| 249 | + }, |
| 250 | + "file_extension": ".py", |
| 251 | + "mimetype": "text/x-python", |
| 252 | + "name": "python", |
| 253 | + "nbconvert_exporter": "python", |
| 254 | + "pygments_lexer": "ipython3", |
| 255 | + "version": "3.12.7" |
| 256 | + } |
| 257 | + }, |
| 258 | + "nbformat": 4, |
| 259 | + "nbformat_minor": 5 |
| 260 | +} |
0 commit comments