|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "407829a7-1d18-4263-8caf-d32a69660c00", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Chapter 03\n", |
| 9 | + "\n", |
| 10 | + "# Python自定义函数计算矩阵乘法,内积视角\n", |
| 11 | + "《线性代数》 | 鸢尾花书:数学不难" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "id": "48338225-feea-4d87-af1b-bb53e87d335b", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "这段代码实现的是**矩阵乘法**的几何解释与程序实现,特别强调了**第一视角**(即逐元素构造的视角),并通过 Python 中 `numpy` 模块中的数组操作来实现矩阵乘法的底层过程。下面从**数学角度**对这段代码进行详细解析,包含必要的数学公式,并解释各个步骤在数学中代表的含义。\n", |
| 20 | + "\n", |
| 21 | + "---\n", |
| 22 | + "\n", |
| 23 | + "### **1. 矩阵乘法的数学基础**\n", |
| 24 | + "\n", |
| 25 | + "设有两个矩阵 $A \\in \\mathbb{R}^{m \\times p}$ 和 $B \\in \\mathbb{R}^{p \\times n}$,那么它们的乘积 $C = AB$ 是一个 $m \\times n$ 的矩阵,其中第 $i$ 行第 $j$ 列元素 $C_{ij}$ 的计算方式是:\n", |
| 26 | + "\n", |
| 27 | + "$$\n", |
| 28 | + "C_{ij} = \\sum_{k=1}^{p} A_{ik} B_{kj}\n", |
| 29 | + "$$\n", |
| 30 | + "\n", |
| 31 | + "这就是矩阵乘法的核心定义。\n", |
| 32 | + "\n", |
| 33 | + "等价地,我们也可以将每个元素看作是:\n", |
| 34 | + "$$\n", |
| 35 | + "C_{ij} = \\text{dot}(A_{i,:}, B_{:,j})\n", |
| 36 | + "$$\n", |
| 37 | + "\n", |
| 38 | + "其中:\n", |
| 39 | + "- $A_{i,:}$ 是矩阵 $A$ 的第 $i$ 行(行向量)\n", |
| 40 | + "- $B_{:,j}$ 是矩阵 $B$ 的第 $j$ 列(列向量)\n", |
| 41 | + "\n", |
| 42 | + "它们的点积等价于上面的求和公式。\n", |
| 43 | + "\n", |
| 44 | + "---\n", |
| 45 | + "\n", |
| 46 | + "### **2. 代码功能解释**\n", |
| 47 | + "\n", |
| 48 | + "函数 `matrix_multiplication(A, B)` 实现了上述的数学过程:\n", |
| 49 | + "\n", |
| 50 | + "- 首先,它检查矩阵 $A$ 的列数是否等于矩阵 $B$ 的行数,即 $p_A = p_B$,这是矩阵乘法的基本条件。\n", |
| 51 | + "- 然后,它初始化一个零矩阵 $C \\in \\mathbb{R}^{m \\times n}$,用于存储结果。\n", |
| 52 | + "- 最后,通过两层循环,对每一个位置 $(i,j)$,取出 $A$ 的第 $i$ 行向量 $A_{i,:}$ 和 $B$ 的第 $j$ 列向量 $B_{:,j}$,并用 `np.dot()` 计算内积,即 $C_{ij}$。\n", |
| 53 | + "\n", |
| 54 | + "这种写法提供了“第一视角”的直观性:你可以看作每个元素 $C_{ij}$ 是通过对应的一行一列计算得来的,而不是整块矩阵乘起来的黑箱操作。\n", |
| 55 | + "\n", |
| 56 | + "---\n", |
| 57 | + "\n", |
| 58 | + "### **3. 示例分析**\n", |
| 59 | + "\n", |
| 60 | + "定义矩阵:\n", |
| 61 | + "$$\n", |
| 62 | + "A = \\begin{bmatrix}\n", |
| 63 | + "1 & 2 & 3 \\\\\n", |
| 64 | + "4 & 5 & 6\n", |
| 65 | + "\\end{bmatrix} \\in \\mathbb{R}^{2 \\times 3}\n", |
| 66 | + "$$\n", |
| 67 | + "\n", |
| 68 | + "其转置为:\n", |
| 69 | + "$$\n", |
| 70 | + "B = A^T = \\begin{bmatrix}\n", |
| 71 | + "1 & 4 \\\\\n", |
| 72 | + "2 & 5 \\\\\n", |
| 73 | + "3 & 6\n", |
| 74 | + "\\end{bmatrix} \\in \\mathbb{R}^{3 \\times 2}\n", |
| 75 | + "$$\n", |
| 76 | + "\n", |
| 77 | + "#### **计算 $AB$:**\n", |
| 78 | + "\n", |
| 79 | + "$A \\in \\mathbb{R}^{2 \\times 3}$,$B \\in \\mathbb{R}^{3 \\times 2}$,所以乘积 $C = AB \\in \\mathbb{R}^{2 \\times 2}$,每个元素计算如下:\n", |
| 80 | + "\n", |
| 81 | + "- $C_{11} = 1 \\cdot 1 + 2 \\cdot 2 + 3 \\cdot 3 = 1 + 4 + 9 = 14$\n", |
| 82 | + "- $C_{12} = 1 \\cdot 4 + 2 \\cdot 5 + 3 \\cdot 6 = 4 + 10 + 18 = 32$\n", |
| 83 | + "- $C_{21} = 4 \\cdot 1 + 5 \\cdot 2 + 6 \\cdot 3 = 4 + 10 + 18 = 32$\n", |
| 84 | + "- $C_{22} = 4 \\cdot 4 + 5 \\cdot 5 + 6 \\cdot 6 = 16 + 25 + 36 = 77$\n", |
| 85 | + "\n", |
| 86 | + "结果为:\n", |
| 87 | + "$$\n", |
| 88 | + "AB = \\begin{bmatrix}\n", |
| 89 | + "14 & 32 \\\\\n", |
| 90 | + "32 & 77\n", |
| 91 | + "\\end{bmatrix}\n", |
| 92 | + "$$\n", |
| 93 | + "\n", |
| 94 | + "#### **计算 $BA$:**\n", |
| 95 | + "\n", |
| 96 | + "$B \\in \\mathbb{R}^{3 \\times 2}$,$A \\in \\mathbb{R}^{2 \\times 3}$,所以乘积 $BA \\in \\mathbb{R}^{3 \\times 3}$,每个元素也是按内积逐一计算。\n", |
| 97 | + "\n", |
| 98 | + "比如第一个元素:\n", |
| 99 | + "- $C_{11} = 1 \\cdot 1 + 4 \\cdot 4 = 1 + 16 = 17$\n", |
| 100 | + "\n", |
| 101 | + "以此类推,可以手动验证其他元素,最终结果为:\n", |
| 102 | + "$$\n", |
| 103 | + "BA = \\begin{bmatrix}\n", |
| 104 | + "17 & 22 & 27 \\\\\n", |
| 105 | + "22 & 29 & 36 \\\\\n", |
| 106 | + "27 & 36 & 45\n", |
| 107 | + "\\end{bmatrix}\n", |
| 108 | + "$$\n", |
| 109 | + "\n", |
| 110 | + "---\n", |
| 111 | + "\n", |
| 112 | + "### **4. 总结**\n", |
| 113 | + "\n", |
| 114 | + "此函数从**线性代数中矩阵乘法的定义出发**,以编程方式逐一实现每个元素的计算。通过使用行向量和列向量的内积,本质上是在做**向量空间中的投影**操作,每个结果元素 $C_{ij}$ 都是 $A$ 的第 $i$ 行与 $B$ 的第 $j$ 列在 $p$ 维空间中的“相似度”或“相关性”。\n", |
| 115 | + "\n", |
| 116 | + "该函数虽然不如 NumPy 的 `np.matmul` 或 `@` 运算符高效,但在教学和理解上是极其直观和有价值的。" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "markdown", |
| 121 | + "id": "27df39fb-584e-478c-8cf5-380731df9bf9", |
| 122 | + "metadata": {}, |
| 123 | + "source": [ |
| 124 | + "## 初始化" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": 4, |
| 130 | + "id": "9280d771-240f-4618-99fc-4e302aad2fd7", |
| 131 | + "metadata": {}, |
| 132 | + "outputs": [], |
| 133 | + "source": [ |
| 134 | + "import numpy as np" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "markdown", |
| 139 | + "id": "48717815-46a7-46b3-b516-fa0cd8b4f67a", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "## 自定义函数,矩阵乘法第一视角" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": 6, |
| 148 | + "id": "8b609167-1523-4fbd-be50-50a8cffcb220", |
| 149 | + "metadata": {}, |
| 150 | + "outputs": [], |
| 151 | + "source": [ |
| 152 | + "def matrix_multiplication_inner(A, B):\n", |
| 153 | + " \n", |
| 154 | + " # 获取矩阵 A 和 B 的形状\n", |
| 155 | + " m, p_A = A.shape\n", |
| 156 | + " p_B, n = B.shape\n", |
| 157 | + "\n", |
| 158 | + " # 检测矩阵形状是否符合矩阵乘法规则\n", |
| 159 | + " if p_A != p_B:\n", |
| 160 | + " raise ValueError('Dimensions do not match')\n", |
| 161 | + "\n", |
| 162 | + " # 初始化结果矩阵 C,形状 (m, n),初始值设为 0\n", |
| 163 | + " C = np.zeros((m, n))\n", |
| 164 | + "\n", |
| 165 | + " # 计算每个元素\n", |
| 166 | + " for i in range(m):\n", |
| 167 | + " for j in range(n):\n", |
| 168 | + " row_i_A = A[i, :] # A 的第 i 行(行向量)\n", |
| 169 | + " col_j_B = B[:, j] # B 的第 j 列(列向量)\n", |
| 170 | + " C[i, j] = np.dot(row_i_A, col_j_B) # 计算内积\n", |
| 171 | + "\n", |
| 172 | + " return C" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "markdown", |
| 177 | + "id": "a491fe45-1b5a-465c-a0b2-86d6ea78f71a", |
| 178 | + "metadata": {}, |
| 179 | + "source": [ |
| 180 | + "## 矩阵乘法" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": 8, |
| 186 | + "id": "0669dd26-522c-4a22-894b-e6f5afb75159", |
| 187 | + "metadata": {}, |
| 188 | + "outputs": [ |
| 189 | + { |
| 190 | + "data": { |
| 191 | + "text/plain": [ |
| 192 | + "array([[1, 2, 3],\n", |
| 193 | + " [4, 5, 6]])" |
| 194 | + ] |
| 195 | + }, |
| 196 | + "execution_count": 8, |
| 197 | + "metadata": {}, |
| 198 | + "output_type": "execute_result" |
| 199 | + } |
| 200 | + ], |
| 201 | + "source": [ |
| 202 | + "A = np.array([[1, 2, 3],\n", |
| 203 | + " [4, 5, 6]])\n", |
| 204 | + "A" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "code", |
| 209 | + "execution_count": 9, |
| 210 | + "id": "c08b9706-5eb1-49f7-87b0-9f2eba3d9897", |
| 211 | + "metadata": {}, |
| 212 | + "outputs": [ |
| 213 | + { |
| 214 | + "data": { |
| 215 | + "text/plain": [ |
| 216 | + "array([[1, 4],\n", |
| 217 | + " [2, 5],\n", |
| 218 | + " [3, 6]])" |
| 219 | + ] |
| 220 | + }, |
| 221 | + "execution_count": 9, |
| 222 | + "metadata": {}, |
| 223 | + "output_type": "execute_result" |
| 224 | + } |
| 225 | + ], |
| 226 | + "source": [ |
| 227 | + "B = A.T\n", |
| 228 | + "B" |
| 229 | + ] |
| 230 | + }, |
| 231 | + { |
| 232 | + "cell_type": "markdown", |
| 233 | + "id": "50cb3105-4b7d-4388-b52e-8d5e758664f6", |
| 234 | + "metadata": {}, |
| 235 | + "source": [ |
| 236 | + "## 矩阵乘法" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "code", |
| 241 | + "execution_count": 11, |
| 242 | + "id": "10165623-315b-459a-9578-12bc191994e0", |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [ |
| 245 | + { |
| 246 | + "data": { |
| 247 | + "text/plain": [ |
| 248 | + "array([[14., 32.],\n", |
| 249 | + " [32., 77.]])" |
| 250 | + ] |
| 251 | + }, |
| 252 | + "execution_count": 11, |
| 253 | + "metadata": {}, |
| 254 | + "output_type": "execute_result" |
| 255 | + } |
| 256 | + ], |
| 257 | + "source": [ |
| 258 | + "matrix_multiplication_inner(A, B)" |
| 259 | + ] |
| 260 | + }, |
| 261 | + { |
| 262 | + "cell_type": "code", |
| 263 | + "execution_count": 12, |
| 264 | + "id": "eed01818-da17-45f9-b9e7-22706d00f163", |
| 265 | + "metadata": {}, |
| 266 | + "outputs": [ |
| 267 | + { |
| 268 | + "data": { |
| 269 | + "text/plain": [ |
| 270 | + "array([[17., 22., 27.],\n", |
| 271 | + " [22., 29., 36.],\n", |
| 272 | + " [27., 36., 45.]])" |
| 273 | + ] |
| 274 | + }, |
| 275 | + "execution_count": 12, |
| 276 | + "metadata": {}, |
| 277 | + "output_type": "execute_result" |
| 278 | + } |
| 279 | + ], |
| 280 | + "source": [ |
| 281 | + "matrix_multiplication_inner(B, A)" |
| 282 | + ] |
| 283 | + }, |
| 284 | + { |
| 285 | + "cell_type": "markdown", |
| 286 | + "id": "b761edf5-05fd-46a0-8c46-1c849c1df004", |
| 287 | + "metadata": {}, |
| 288 | + "source": [ |
| 289 | + "作者\t**生姜DrGinger** \n", |
| 290 | + "脚本\t**生姜DrGinger** \n", |
| 291 | + "视频\t**崔崔CuiCui** \n", |
| 292 | + "开源资源\t[**GitHub**](https://github.com/Visualize-ML) \n", |
| 293 | + "平台\t[**油管**](https://www.youtube.com/@DrGinger_Jiang)\t\t\n", |
| 294 | + "\t\t[**iris小课堂**](https://space.bilibili.com/3546865719052873)\t\t\n", |
| 295 | + "\t\t[**生姜DrGinger**](https://space.bilibili.com/513194466) " |
| 296 | + ] |
| 297 | + } |
| 298 | + ], |
| 299 | + "metadata": { |
| 300 | + "kernelspec": { |
| 301 | + "display_name": "Python [conda env:base] *", |
| 302 | + "language": "python", |
| 303 | + "name": "conda-base-py" |
| 304 | + }, |
| 305 | + "language_info": { |
| 306 | + "codemirror_mode": { |
| 307 | + "name": "ipython", |
| 308 | + "version": 3 |
| 309 | + }, |
| 310 | + "file_extension": ".py", |
| 311 | + "mimetype": "text/x-python", |
| 312 | + "name": "python", |
| 313 | + "nbconvert_exporter": "python", |
| 314 | + "pygments_lexer": "ipython3", |
| 315 | + "version": "3.12.7" |
| 316 | + } |
| 317 | + }, |
| 318 | + "nbformat": 4, |
| 319 | + "nbformat_minor": 5 |
| 320 | +} |
0 commit comments