|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0f84611f-5f01-4dc6-ba6b-abefedaeaa61", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Chapter 02\n", |
| 9 | + "\n", |
| 10 | + "# 自定义函数计算矩阵乘法\n", |
| 11 | + "《线性代数》 | 鸢尾花书:数学不难" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "id": "9bed0075-4769-46aa-8ee6-c6c449b83284", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "这段代码的主要任务是从数学角度实现**矩阵乘法**(Matrix Multiplication)的过程,并验证其在不同矩阵顺序下的结果。以下是对代码的详细数学解释:\n", |
| 20 | + "\n", |
| 21 | + "---\n", |
| 22 | + "\n", |
| 23 | + "### 1. **矩阵乘法的基本原理**\n", |
| 24 | + "\n", |
| 25 | + "设有两个矩阵 $A \\in \\mathbb{R}^{m \\times p}$ 和 $B \\in \\mathbb{R}^{p \\times n}$,它们的乘积定义为一个新的矩阵 $C \\in \\mathbb{R}^{m \\times n}$,满足:\n", |
| 26 | + "\n", |
| 27 | + "$$\n", |
| 28 | + "C_{ij} = \\sum_{k=1}^{p} A_{ik} \\cdot B_{kj}, \\quad \\text{其中 } 1 \\leq i \\leq m,\\ 1 \\leq j \\leq n\n", |
| 29 | + "$$\n", |
| 30 | + "\n", |
| 31 | + "这意味着,$C$ 的第 $i$ 行第 $j$ 列的元素是 $A$ 的第 $i$ 行和 $B$ 的第 $j$ 列的**点积**。\n", |
| 32 | + "\n", |
| 33 | + "---\n", |
| 34 | + "\n", |
| 35 | + "### 2. **代码实现的数学对应**\n", |
| 36 | + "\n", |
| 37 | + "定义的函数 `matrix_multiplication(A, B)` 实际上就是实现上述公式的计算方式:\n", |
| 38 | + "\n", |
| 39 | + "- 首先获取矩阵 $A$ 和 $B$ 的形状分别为 $(m, p_A)$ 和 $(p_B, n)$。\n", |
| 40 | + "- 然后检查是否满足矩阵乘法的条件,即 $p_A = p_B$,对应数学上的 $A \\in \\mathbb{R}^{m \\times p}$ 和 $B \\in \\mathbb{R}^{p \\times n}$。\n", |
| 41 | + "- 接着创建零矩阵 $C \\in \\mathbb{R}^{m \\times n}$。\n", |
| 42 | + "- 使用三重循环实现:\n", |
| 43 | + "\n", |
| 44 | + "$$\n", |
| 45 | + "\\text{for } i = 0 \\text{ to } m-1:\\\\\n", |
| 46 | + "\\quad \\text{for } j = 0 \\text{ to } n-1:\\\\\n", |
| 47 | + "\\quad\\quad \\text{for } k = 0 \\text{ to } p-1:\\\\\n", |
| 48 | + "\\quad\\quad\\quad C[i,j] \\mathrel{+}= A[i,k] \\cdot B[k,j]\n", |
| 49 | + "$$\n", |
| 50 | + "\n", |
| 51 | + "该循环逐元素计算并累加 $C_{ij}$ 的值,和上述数学定义完全一致。\n", |
| 52 | + "\n", |
| 53 | + "---\n", |
| 54 | + "\n", |
| 55 | + "### 3. **具体矩阵的构造与运算**\n", |
| 56 | + "\n", |
| 57 | + "矩阵 $A$ 被定义为:\n", |
| 58 | + "\n", |
| 59 | + "$$\n", |
| 60 | + "A = \\begin{bmatrix}\n", |
| 61 | + "1 & 2 & 3 \\\\\n", |
| 62 | + "4 & 5 & 6\n", |
| 63 | + "\\end{bmatrix} \\in \\mathbb{R}^{2 \\times 3}\n", |
| 64 | + "$$\n", |
| 65 | + "\n", |
| 66 | + "然后取其转置得到:\n", |
| 67 | + "\n", |
| 68 | + "$$\n", |
| 69 | + "B = A^\\top = \\begin{bmatrix}\n", |
| 70 | + "1 & 4 \\\\\n", |
| 71 | + "2 & 5 \\\\\n", |
| 72 | + "3 & 6\n", |
| 73 | + "\\end{bmatrix} \\in \\mathbb{R}^{3 \\times 2}\n", |
| 74 | + "$$\n", |
| 75 | + "\n", |
| 76 | + "再进行两次矩阵乘法:\n", |
| 77 | + "\n", |
| 78 | + "#### (1) $A \\cdot B$\n", |
| 79 | + "\n", |
| 80 | + "$$\n", |
| 81 | + "A \\cdot B = \\begin{bmatrix}\n", |
| 82 | + "1 & 2 & 3 \\\\\n", |
| 83 | + "4 & 5 & 6\n", |
| 84 | + "\\end{bmatrix}\n", |
| 85 | + "\\cdot\n", |
| 86 | + "\\begin{bmatrix}\n", |
| 87 | + "1 & 4 \\\\\n", |
| 88 | + "2 & 5 \\\\\n", |
| 89 | + "3 & 6\n", |
| 90 | + "\\end{bmatrix}\n", |
| 91 | + "= \\begin{bmatrix}\n", |
| 92 | + "1\\cdot1 + 2\\cdot2 + 3\\cdot3 & 1\\cdot4 + 2\\cdot5 + 3\\cdot6 \\\\\n", |
| 93 | + "4\\cdot1 + 5\\cdot2 + 6\\cdot3 & 4\\cdot4 + 5\\cdot5 + 6\\cdot6\n", |
| 94 | + "\\end{bmatrix}\n", |
| 95 | + "= \\begin{bmatrix}\n", |
| 96 | + "14 & 32 \\\\\n", |
| 97 | + "32 & 77\n", |
| 98 | + "\\end{bmatrix}\n", |
| 99 | + "$$\n", |
| 100 | + "\n", |
| 101 | + "#### (2) $B \\cdot A$\n", |
| 102 | + "\n", |
| 103 | + "$$\n", |
| 104 | + "B \\cdot A = \\begin{bmatrix}\n", |
| 105 | + "1 & 4 \\\\\n", |
| 106 | + "2 & 5 \\\\\n", |
| 107 | + "3 & 6\n", |
| 108 | + "\\end{bmatrix}\n", |
| 109 | + "\\cdot\n", |
| 110 | + "\\begin{bmatrix}\n", |
| 111 | + "1 & 2 & 3 \\\\\n", |
| 112 | + "4 & 5 & 6\n", |
| 113 | + "\\end{bmatrix}\n", |
| 114 | + "= \\begin{bmatrix}\n", |
| 115 | + "1\\cdot1 + 4\\cdot4 & 1\\cdot2 + 4\\cdot5 & 1\\cdot3 + 4\\cdot6 \\\\\n", |
| 116 | + "2\\cdot1 + 5\\cdot4 & 2\\cdot2 + 5\\cdot5 & 2\\cdot3 + 5\\cdot6 \\\\\n", |
| 117 | + "3\\cdot1 + 6\\cdot4 & 3\\cdot2 + 6\\cdot5 & 3\\cdot3 + 6\\cdot6\n", |
| 118 | + "\\end{bmatrix}\n", |
| 119 | + "= \\begin{bmatrix}\n", |
| 120 | + "17 & 22 & 27 \\\\\n", |
| 121 | + "22 & 29 & 36 \\\\\n", |
| 122 | + "27 & 36 & 45\n", |
| 123 | + "\\end{bmatrix}\n", |
| 124 | + "$$\n", |
| 125 | + "\n", |
| 126 | + "---\n", |
| 127 | + "\n", |
| 128 | + "### 4. **总结**\n", |
| 129 | + "\n", |
| 130 | + "本代码实现的是基础线性代数中最核心的运算之一:**矩阵乘法**,其数学本质是将一个矩阵的行向量与另一个矩阵的列向量进行点积。由于使用的是纯 Python 的循环方式(而不是 NumPy 的矢量化计算),这也帮助我们直观理解矩阵乘法的底层运算逻辑,尤其对学习者理解以下公式至关重要:\n", |
| 131 | + "\n", |
| 132 | + "$$\n", |
| 133 | + "C_{ij} = \\sum_{k=1}^{p} A_{ik} \\cdot B_{kj}\n", |
| 134 | + "$$\n", |
| 135 | + "\n", |
| 136 | + "这个公式是整个函数 `matrix_multiplication` 的核心。" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "id": "62554c66-72b0-4680-8498-2c1f4b7de75f", |
| 142 | + "metadata": {}, |
| 143 | + "source": [ |
| 144 | + "## 初始化" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": 2, |
| 150 | + "id": "4726c405-d63a-42cd-b391-471764ec75b5", |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "import numpy as np" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "markdown", |
| 159 | + "id": "25ce6457-d6c3-4c33-93f7-0311dad3d710", |
| 160 | + "metadata": {}, |
| 161 | + "source": [ |
| 162 | + "## 自定义函数" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": 4, |
| 168 | + "id": "311e7aee-b415-47ec-9971-a16921c77ce4", |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [], |
| 171 | + "source": [ |
| 172 | + "def matrix_multiplication(A, B):\n", |
| 173 | + "\n", |
| 174 | + " # 获取矩阵 A 和 B 的形状\n", |
| 175 | + " m, p_A = A.shape\n", |
| 176 | + " p_B, n = B.shape\n", |
| 177 | + "\n", |
| 178 | + " # 检测矩阵形状是否符合矩阵乘法规则\n", |
| 179 | + " if p_A != p_B:\n", |
| 180 | + " raise ValueError('Dimensions do not match')\n", |
| 181 | + "\n", |
| 182 | + " # 初始化结果矩阵 C,形状 (m, n),初始值设为 0\n", |
| 183 | + " C = np.zeros((m, n))\n", |
| 184 | + "\n", |
| 185 | + " # 进行矩阵乘法计算,使用三层 for 循环\n", |
| 186 | + " for i in range(m): # 遍历 A 的行\n", |
| 187 | + " for j in range(n): # 遍历 B 的列\n", |
| 188 | + " for k in range(p_A): # 遍历 A 的列 / B 的行\n", |
| 189 | + " C[i, j] += A[i, k] * B[k, j] # 逐元素累加\n", |
| 190 | + "\n", |
| 191 | + " return C" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "markdown", |
| 196 | + "id": "3d7cf1d6-3406-4c65-8860-eb9c555c2e46", |
| 197 | + "metadata": {}, |
| 198 | + "source": [ |
| 199 | + "## 定义矩阵" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": 15, |
| 205 | + "id": "615efd21-d4c7-41b6-9827-481d11fec522", |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [ |
| 208 | + { |
| 209 | + "data": { |
| 210 | + "text/plain": [ |
| 211 | + "array([[1, 2, 3],\n", |
| 212 | + " [4, 5, 6]])" |
| 213 | + ] |
| 214 | + }, |
| 215 | + "execution_count": 15, |
| 216 | + "metadata": {}, |
| 217 | + "output_type": "execute_result" |
| 218 | + } |
| 219 | + ], |
| 220 | + "source": [ |
| 221 | + "A = np.array([[1, 2, 3],\n", |
| 222 | + " [4, 5, 6]])\n", |
| 223 | + "A" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "code", |
| 228 | + "execution_count": 17, |
| 229 | + "id": "1aa1a8c3-7fae-453c-9016-8ce410ef9f7f", |
| 230 | + "metadata": {}, |
| 231 | + "outputs": [ |
| 232 | + { |
| 233 | + "data": { |
| 234 | + "text/plain": [ |
| 235 | + "array([[1, 4],\n", |
| 236 | + " [2, 5],\n", |
| 237 | + " [3, 6]])" |
| 238 | + ] |
| 239 | + }, |
| 240 | + "execution_count": 17, |
| 241 | + "metadata": {}, |
| 242 | + "output_type": "execute_result" |
| 243 | + } |
| 244 | + ], |
| 245 | + "source": [ |
| 246 | + "B = A.T\n", |
| 247 | + "B" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "markdown", |
| 252 | + "id": "b540f553-e9fe-44bf-88dd-05c8b83efecd", |
| 253 | + "metadata": {}, |
| 254 | + "source": [ |
| 255 | + "## 矩阵乘法" |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | + "cell_type": "code", |
| 260 | + "execution_count": 20, |
| 261 | + "id": "1ce432ee-3cf1-468e-820e-825b581820e1", |
| 262 | + "metadata": {}, |
| 263 | + "outputs": [ |
| 264 | + { |
| 265 | + "data": { |
| 266 | + "text/plain": [ |
| 267 | + "array([[14., 32.],\n", |
| 268 | + " [32., 77.]])" |
| 269 | + ] |
| 270 | + }, |
| 271 | + "execution_count": 20, |
| 272 | + "metadata": {}, |
| 273 | + "output_type": "execute_result" |
| 274 | + } |
| 275 | + ], |
| 276 | + "source": [ |
| 277 | + "matrix_multiplication(A, B)" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "execution_count": 22, |
| 283 | + "id": "513aaf4c-f3a6-4362-a628-3c0bb729faef", |
| 284 | + "metadata": {}, |
| 285 | + "outputs": [ |
| 286 | + { |
| 287 | + "data": { |
| 288 | + "text/plain": [ |
| 289 | + "array([[17., 22., 27.],\n", |
| 290 | + " [22., 29., 36.],\n", |
| 291 | + " [27., 36., 45.]])" |
| 292 | + ] |
| 293 | + }, |
| 294 | + "execution_count": 22, |
| 295 | + "metadata": {}, |
| 296 | + "output_type": "execute_result" |
| 297 | + } |
| 298 | + ], |
| 299 | + "source": [ |
| 300 | + "matrix_multiplication(B, A)" |
| 301 | + ] |
| 302 | + }, |
| 303 | + { |
| 304 | + "cell_type": "markdown", |
| 305 | + "id": "f8dae950-44ce-4a9e-893f-c6cbd84cc502", |
| 306 | + "metadata": {}, |
| 307 | + "source": [ |
| 308 | + "作者\t**生姜DrGinger** \n", |
| 309 | + "脚本\t**生姜DrGinger** \n", |
| 310 | + "视频\t**崔崔CuiCui** \n", |
| 311 | + "开源资源\t[**GitHub**](https://github.com/Visualize-ML) \n", |
| 312 | + "平台\t[**油管**](https://www.youtube.com/@DrGinger_Jiang)\t\t\n", |
| 313 | + "\t\t[**iris小课堂**](https://space.bilibili.com/3546865719052873)\t\t\n", |
| 314 | + "\t\t[**生姜DrGinger**](https://space.bilibili.com/513194466) " |
| 315 | + ] |
| 316 | + } |
| 317 | + ], |
| 318 | + "metadata": { |
| 319 | + "kernelspec": { |
| 320 | + "display_name": "Python [conda env:base] *", |
| 321 | + "language": "python", |
| 322 | + "name": "conda-base-py" |
| 323 | + }, |
| 324 | + "language_info": { |
| 325 | + "codemirror_mode": { |
| 326 | + "name": "ipython", |
| 327 | + "version": 3 |
| 328 | + }, |
| 329 | + "file_extension": ".py", |
| 330 | + "mimetype": "text/x-python", |
| 331 | + "name": "python", |
| 332 | + "nbconvert_exporter": "python", |
| 333 | + "pygments_lexer": "ipython3", |
| 334 | + "version": "3.12.7" |
| 335 | + } |
| 336 | + }, |
| 337 | + "nbformat": 4, |
| 338 | + "nbformat_minor": 5 |
| 339 | +} |
0 commit comments