Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions fast_llm/models/gpt/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,10 @@ class MixtralGPTHuggingfaceCheckpointFormat(GPTHuggingfaceCheckpointFormat):
name: typing.ClassVar[str] = "mixtral"


class OlmoeGPTHuggingfaceCheckpointFormat(GPTHuggingfaceCheckpointFormat):
name: typing.ClassVar[str] = "olmoe"


@config_class()
class GPTArchitectureConfig(LanguageModelArchitectureConfig):
_abstract = False
Expand Down Expand Up @@ -98,6 +102,7 @@ class GPTModelConfig(FastLLMModelConfig):
LlamaGPTHuggingfaceCheckpointFormat,
MistralGPTHuggingfaceCheckpointFormat,
MixtralGPTHuggingfaceCheckpointFormat,
OlmoeGPTHuggingfaceCheckpointFormat,
)

@classmethod
Expand Down
40 changes: 39 additions & 1 deletion fast_llm/models/gpt/conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
LlamaGPTHuggingfaceCheckpointFormat,
MistralGPTHuggingfaceCheckpointFormat,
MixtralGPTHuggingfaceCheckpointFormat,
OlmoeGPTHuggingfaceCheckpointFormat,
Starcoder2GPTHuggingfaceCheckpointFormat,
)
from fast_llm.models.gpt.model import GPTModel
Expand Down Expand Up @@ -103,7 +104,7 @@ class CommonHuggingfaceCheckpointHandler(HuggingfaceStateDictCheckpointHandler):
_model: GPTModel
_model_class: typing.ClassVar[FastLLMModelConfig] = GPTModelConfig
"""
Common converter for llama-based huggingface models (llama, starcoder2, mistral, mixtral)
Common converter for llama-based huggingface models (llama, starcoder2, mistral, mixtral, olmoe)
"""

@abc.abstractmethod
Expand Down Expand Up @@ -336,6 +337,42 @@ def _get_mlp_converters(self, fast_llm_prefix: str, hf_prefix: str):
]


class OlmoeHuggingfaceCheckpointHandler(CommonLlamaHuggingfaceCheckpointHandler):
format: typing.ClassVar[type[CheckpointFormat]] = OlmoeGPTHuggingfaceCheckpointFormat

@classmethod
def _create_config_converters(cls) -> list[ParamConverter]:
return super()._create_config_converters() + [
ConstantExportParamConverter(None, "architectures", ["OlmoeForCausalLM"]),
ConstantImportParamConverter(("transformer", "expert_routing_type"), None, RoutingType.topk),
ParamConverter(("transformer", "num_experts"), "num_experts"),
ParamConverter(("transformer", "num_experts_per_token"), "num_experts_per_tok"),
# TODO: change this once fast-llm supports normalized topk probs
ConstantExportParamConverter(None, "norm_topk_prob", True),
# TODO: change this once fast-llm supports qk normalization
ConstantExportParamConverter(None, "qk_norm", False),
]

def _get_mlp_converters(self, fast_llm_prefix: str, hf_prefix: str):
num_experts = self._model.base_model_config.transformer.num_experts
return [
WeightConverter(f"{fast_llm_prefix}.mlp.router.weight", f"{hf_prefix}.mlp.gate.weight"),
SplitWeightConverter(
f"{fast_llm_prefix}.mlp.layer_1.weight",
tuple(
f"{hf_prefix}.mlp.experts.{i}.{w}.weight"
for i in range(num_experts)
for w in ("gate_proj", "up_proj")
),
),
MLPLayer2Converter(
f"{fast_llm_prefix}.mlp.layer_2.weight",
tuple(f"{hf_prefix}.mlp.experts.{i}.down_proj.weight" for i in range(num_experts)),
self._model.base_model_config,
),
]


class AutoGPTHuggingfaceCheckpointHandler(
AutoStateDictCheckpointHandler, HuggingfaceStateDictCheckpointHandler, abc.ABC
):
Expand All @@ -345,4 +382,5 @@ class AutoGPTHuggingfaceCheckpointHandler(
LlamaGPTHuggingfaceCheckpointFormat.name: LlamaHuggingfaceCheckpointHandler,
MistralGPTHuggingfaceCheckpointFormat.name: MistralHuggingfaceCheckpointHandler,
MixtralGPTHuggingfaceCheckpointFormat.name: MixtralHuggingfaceCheckpointHandler,
OlmoeGPTHuggingfaceCheckpointFormat.name: OlmoeHuggingfaceCheckpointHandler,
}
Loading