Skip to content

Commit

Permalink
(f(x -> f(x))
Browse files Browse the repository at this point in the history
  • Loading branch information
Scriptim committed Nov 5, 2019
1 parent a38d009 commit ec3d379
Show file tree
Hide file tree
Showing 2 changed files with 1 addition and 1 deletion.
Binary file modified Mathe.pdf
Binary file not shown.
2 changes: 1 addition & 1 deletion Mathe_11_2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -829,7 +829,7 @@ \subsubsection{Produktregel}
\begin{gather*}
k(x) = f(x) \cdot g(x) \\
k'(x) = \lim\limits_{h \to 0} \frac{f(x + h) \cdot g(x + h) - f(x) \cdot g(x)}{h} \\
\;= \lim\limits_{h \to 0} \frac{f(x + h) \cdot g(x + h) {\color{red}- f(x \cdot g(x + h) + f(x) \cdot g(x + h)} - f(x) \cdot g(x)}{h} \\
\;= \lim\limits_{h \to 0} \frac{f(x + h) \cdot g(x + h) {\color{red}- f(x) \cdot g(x + h) + f(x) \cdot g(x + h)} - f(x) \cdot g(x)}{h} \\
\;= \lim\limits_{h \to 0} \frac{{\color{blue}[f(x + h) - f(x)]} \cdot g(x + h) + f(x) \cdot {\color{violet}[g(x + h) - g(x)]}}{h} \\
\;= \boldsymbol{{\color{blue}f'(x)} \cdot g(x) + f(x) \cdot {\color{violet}g'(x)}}
\end{gather*}
Expand Down

0 comments on commit ec3d379

Please sign in to comment.