Skip to content

Commit

Permalink
Mehrstufige Zufallsversuche - Baumdiagramme; 455/1
Browse files Browse the repository at this point in the history
  • Loading branch information
Scriptim committed Jun 20, 2019
1 parent c9656e5 commit 026e4d9
Show file tree
Hide file tree
Showing 2 changed files with 194 additions and 0 deletions.
Binary file modified Mathe.pdf
Binary file not shown.
194 changes: 194 additions & 0 deletions Mathe_12_2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1047,3 +1047,197 @@ \section{Begriffe}
\item [$\rightarrow$] Die Wahrscheinlichkeit $W = 1$ ist verteilt auf die einzelnen Ereignisse.
\end{itemize}
\end{itemize}
\section{Mehrstufige Zufallsversuche - Baumdiagramme}
\textbf{Beispiel: ``Mensch ärgere dich nicht'', ich sitze im Haus (mit Zurücklegen)}
\begin{gather*}
\begin{tikzpicture}[grow=down]
\tikzstyle{level 1} = [level distance=2.5cm, sibling distance=6.8cm]
\tikzstyle{level 2} = [level distance=2.5cm, sibling distance=3.4cm]
\tikzstyle{level 3} = [level distance=2.5cm, sibling distance=1.7cm]
\tikzstyle{leaf} = [text width=4em, text centered]
\node {würfeln}
child {
node {Sechs}
child {
node {Sechs}
child {
node[leaf] {Sechs $(6, 6, 6)$}
edge from parent
node[above left] {$\frac{1}{6}$}
}
child {
node[leaf] {keine Sechs $(6, 6, \overline{6})$}
edge from parent
node[above right] {$\frac{5}{6}$}
}
edge from parent
node[above left] {$\frac{1}{6}$}
}
child {
node {keine Sechs}
child {
node[leaf] {Sechs $(6, \overline{6}, 6)$}
edge from parent
node[above left] {$\frac{1}{6}$}
}
child {
node[leaf] {keine Sechs $(6, \overline{6}, \overline{6})$}
edge from parent
node[above right] {$\frac{5}{6}$}
}
edge from parent
node[above right] {$\frac{5}{6}$}
}
edge from parent
node[above left] {$\frac{1}{6}$}
}
child {
node {keine Sechs}
child {
node {Sechs}
child {
node[leaf] {Sechs $(\overline{6}, 6, 6)$}
edge from parent
node[above left] {$\frac{1}{6}$}
}
child {
node[leaf] {keine Sechs $(\overline{6}, 6, \overline{6})$}
edge from parent
node[above right] {$\frac{5}{6}$}
}
edge from parent
node[above left] {$\frac{1}{6}$}
}
child {
node {keine Sechs}
child {
node[leaf] {Sechs $(\overline{6}, \overline{6}, 6)$}
edge from parent
node[above left] {$\frac{1}{6}$}
}
child {
node[leaf] {keine Sechs $(\overline{6}, \overline{6}, \overline{6})$}
edge from parent
node[above right] {$\frac{5}{6}$}
}
edge from parent
node[above right] {$\frac{5}{6}$}
}
edge from parent
node[above right] {$\frac{5}{6}$}
};
\end{tikzpicture}
\end{gather*}
\begin{gather*}
S = \{(6, 6, 6), (6, 6, \overline{6}), ...\} \quad \text{(Ergebnismenge)} \\
|S| = 2^3 = 8
\end{gather*}
Jeder Pfad führt zu einem Ergebnis $e$ \\
Jeder Pfad besteht hier aus $3$ Zweigen (dreistufig) \\\\
Die Pfadwahrscheinlichkeit ist das Produkt der Zweige $w$ entlang des Pfades, \\
z. B. $P((6, \overline{6}, \overline{6})) = \frac{1}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} = \frac{25}{216}$ \\\\
$E_1$: genau zwei Sechsen bei drei Würfen \\
Ereignis $E_1$ besteht aus drei Ergebnissen ($(6, 6, \overline{6})$, $(6, \overline{6}, 6)$, $(\overline{6}, 6, 6)$) \\
Die Wahrscheinlichkeit von $E_1$ ist die Summe der Wahrscheinlichkeiten der Ergebnisse
$P(E_1) = \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{5}{6} + \frac{1}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} + \frac{5}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{15}{216} = \frac{5}{72}$ \\
\textbf{Beispiel: 3 Züge ohne Zurücklegen (anfangs $2$ rote, $3$ gelbe Kugeln)}
\begin{gather*}
\begin{tikzpicture}[grow=down]
\tikzstyle{level 1} = [level distance=2.5cm, sibling distance=6cm]
\tikzstyle{level 2} = [level distance=2.5cm, sibling distance=3cm]
\tikzstyle{level 3} = [level distance=2.5cm, sibling distance=1.5cm]
\node {ziehen}
child {
node {rot}
child {
node {rot}
child {
node {rot}
edge from parent
node[above left] {$0$}
}
child {
node {gelb}
edge from parent
node[above right] {$1$}
}
edge from parent
node[above left] {$\frac{1}{4}$}
}
child {
node {gelb}
child {
node {rot}
edge from parent
node[above left] {$\frac{1}{3}$}
}
child {
node {gelb}
edge from parent
node[above right] {$\frac{2}{3}$}
}
edge from parent
node[above right] {$\frac{3}{4}$}
}
edge from parent
node[above left] {$\frac{2}{5}$}
}
child {
node {gelb}
child {
node {rot}
child {
node {rot}
edge from parent
node[above left] {$\frac{1}{3}$}
}
child {
node {gelb}
edge from parent
node[above right] {$\frac{2}{3}$}
}
edge from parent
node[above left] {$\frac{2}{4}$}
}
child {
node {gelb}
child {
node {rot}
edge from parent
node[above left] {$\frac{2}{3}$}
}
child {
node {gelb}
edge from parent
node[above right] {$\frac{1}{3}$}
}
edge from parent
node[above right] {$\frac{2}{4}$}
}
edge from parent
node[above right] {$\frac{3}{5}$}
};
\end{tikzpicture}
\end{gather*}
\begin{exercise}{455/1}
\item [a]
\begin{gather*}
\text{m. Z.} \quad P((r, r)) = \frac{4}{7} \cdot \frac{4}{7} = \frac{16}{49} \\
\text{o. Z.} \quad P((r, r)) = \frac{4}{7} \cdot \frac{3}{6} = \frac{2}{7}
\end{gather*}
\item [b]
\begin{gather*}
\text{m. Z.} \quad P((r, b)) = 2 \cdot \frac{4}{7} \cdot \frac{3}{7} = \frac{24}{49} \\
\text{o. Z.} \quad P((r, b)) = \frac{4}{7} \cdot \frac{3}{6} + \frac{3}{7} \cdot \frac{4}{6} = \frac{4}{7}
\end{gather*}
\item [c]
\begin{gather*}
\text{m. Z.} \quad P((r, r), (r, b)) = \frac{16}{49} + \frac{24}{49} = \frac{40}{49} \\
\text{o. Z.} \quad P((r, r), (r, b)) = \frac{2}{7} + \frac{4}{7} = \frac{6}{7}
\end{gather*}
\item [d]
\begin{gather*}
\text{m. Z.} \quad P((r, r), (r, b)) = \frac{40}{49} \\
\text{o. Z.} \quad P((r, r), (r, b)) = \frac{6}{7}
\end{gather*}
\end{exercise}

0 comments on commit 026e4d9

Please sign in to comment.