|
| 1 | +import math |
| 2 | +import numpy as np |
| 3 | +import itertools |
| 4 | +from utils import err, fuzzy_and, fuzzy_or |
| 5 | + |
| 6 | +class DRN(object): |
| 7 | + def __init__(self, channel=1, lr=1.0, glr=1.0, alpha=1.0, rho=1, d=2, gamma=1): |
| 8 | + self.lr = lr # learning rate |
| 9 | + self.glr = glr # global learning rate |
| 10 | + self.alpha = alpha # parameter for node activation |
| 11 | + self.rho = rho # rho parameter |
| 12 | + self.d = d |
| 13 | + self.gamma = gamma |
| 14 | + self.X = [] |
| 15 | + self.Y = [] |
| 16 | + self.w = None # weights for clusters (samples, weights) |
| 17 | + self.wg = None # global weight vector |
| 18 | + self.n_category = 0 # number of categories |
| 19 | + self.group = np.array([]) # group container |
| 20 | + self.channel = channel # number of channels in input |
| 21 | + |
| 22 | + def learningNN(self, point): # sample = [-0.0213,-0.0578] |
| 23 | + self.X = point |
| 24 | + self.updateWg(self.X) |
| 25 | + self.activateNN() |
| 26 | + nu_index, all_index = self.code_comp() |
| 27 | + print(all_index) |
| 28 | + # resonance check |
| 29 | + if len(all_index) == 0: |
| 30 | + condition = False |
| 31 | + else: |
| 32 | + for i in range(self.n_category): |
| 33 | + resonanceIdx = all_index[i] |
| 34 | + condition = self.resonance(self.w[resonanceIdx]) |
| 35 | + if condition: |
| 36 | + break |
| 37 | + if condition: # condition 추가 |
| 38 | + self.w[resonanceIdx] = self.updateNN(point, self.w[resonanceIdx], self.lr) |
| 39 | + else: |
| 40 | + self.n_category += 1 |
| 41 | + self.Y.append(1) |
| 42 | + if self.w is None: |
| 43 | + self.w = np.atleast_2d([np.hstack((self.X, self.X))]) |
| 44 | + else: |
| 45 | + self.w = np.vstack((self.w, np.hstack((self.X, self.X)))) |
| 46 | + nu_index = np.append(nu_index, self.n_category-1) # np.append(nu_index, self.n_category) |
| 47 | + if self.n_category > 1: |
| 48 | + self.add_group(nu_index, condition, resonanceIdx) |
| 49 | + |
| 50 | + def add_group(self, index, condition, resonanceIdx): |
| 51 | + index = np.array(list(itertools.combinations(index, self.d))) |
| 52 | + for i in range(index.shape[0]): |
| 53 | + is_present = False |
| 54 | + for j in range(self.group.shape[0]): # group = np.array([[1, 2,4, 3], [2, 3, 4,4],[4,5,6,4]]) shape:(3, 4) |
| 55 | + if all(self.group[j,1:3] == index[i]): |
| 56 | + is_present = True |
| 57 | + break |
| 58 | + if is_present == False: |
| 59 | + T = self.synapticStrength(index[i]) |
| 60 | + if self.group.size == 0: |
| 61 | + self.group = np.append(self.group, np.append(T, index[i])) |
| 62 | + self.group = np.array([self.group]) |
| 63 | + else: |
| 64 | + self.group = np.vstack((self.group, np.append(T, index[i]))) |
| 65 | + |
| 66 | + if condition == True: |
| 67 | + for j in range(self.group.shape[0]): |
| 68 | + if any(self.group[j,1:3] == resonanceIdx): |
| 69 | + T = self.synapticStrength(self.group[j,1:3]) |
| 70 | + self.group[i, 0] = T |
| 71 | + |
| 72 | + def synapticStrength(self, index): |
| 73 | + p = [] |
| 74 | + for i in range(index.size): |
| 75 | + for j in range(self.channel): |
| 76 | + points = np.vstack((self.w[int(index[i]), :self.w.shape[1]//2], self.w[int(index[i]), self.w.shape[1]//2:])) |
| 77 | + p.append(self.coM_calc(points)) |
| 78 | + p = np.array(p) |
| 79 | + CoM_length = p[0] - p[1] |
| 80 | + T = math.exp(-self.alpha * np.linalg.norm(CoM_length, 2)) |
| 81 | + return T |
| 82 | + |
| 83 | + def coM_calc(self, points): |
| 84 | + coM_point = np.sum(points, axis=0) / points.shape[0] |
| 85 | + return coM_point |
| 86 | + |
| 87 | + def updateWg(self, point): |
| 88 | + if self.n_category == 0: |
| 89 | + self.wg = np.append(self.X, self.X) |
| 90 | + else: |
| 91 | + e = err(self.X, self.wg) |
| 92 | + if e != 0: |
| 93 | + self.wg = self.updateNN(point, self.wg, self.glr) |
| 94 | + self.grouping() |
| 95 | + |
| 96 | + def updateNN(self, input, weight, lr): |
| 97 | + w1 = weight[:len(weight)//2] |
| 98 | + w2 = weight[len(weight)//2:] |
| 99 | + weight = (1 - lr) * weight + lr * (np.append(fuzzy_and(input, w1), fuzzy_or(input, w2))) |
| 100 | + return weight |
| 101 | + |
| 102 | + def activateNN(self): |
| 103 | + for i in range(self.n_category): |
| 104 | + e = err(self.X, self.w[i]) |
| 105 | + self.Y[i] = math.exp(-self.alpha*e) |
| 106 | + |
| 107 | + def code_comp(self): |
| 108 | + all_index = np.array(self.Y).argsort()[::-1] |
| 109 | + nu_index = all_index |
| 110 | + if all_index.size == 0: # if there is no node |
| 111 | + all_index = [] |
| 112 | + nu_index = [] |
| 113 | + elif all_index.size != 1: # if there are several nodes |
| 114 | + if self.d > all_index.size: |
| 115 | + nu_index = all_index |
| 116 | + else: |
| 117 | + nu_index = all_index[:self.d] |
| 118 | + nu_index = np.sort(nu_index) |
| 119 | + return nu_index, all_index |
| 120 | + |
| 121 | + def resonance(self, weight): |
| 122 | + w1 = weight[:len(weight) // 2] |
| 123 | + w2 = weight[len(weight) // 2:] |
| 124 | + M = self.wg[len(self.wg) // 2:] - self.wg[:len(self.wg) // 2] |
| 125 | + S = fuzzy_or(self.X, w2) - fuzzy_and(self.X, w1) |
| 126 | + epsilon = 1e-6 |
| 127 | + n = w1.size |
| 128 | + M[M == 0] = epsilon |
| 129 | + L = S / M |
| 130 | + if sum(L) / n <= 1 - self.rho: |
| 131 | + condition = True |
| 132 | + else: |
| 133 | + condition = False |
| 134 | + return condition |
| 135 | + |
| 136 | + def resonance_grouping(self, weight): |
| 137 | + w1 = weight[:len(weight) // 2] |
| 138 | + w2 = weight[len(weight) // 2:] |
| 139 | + M = self.wg[len(self.wg) // 2:] - self.wg[:len(self.wg) // 2] |
| 140 | + S = w2 - w1 |
| 141 | + epsilon = 1e-6 |
| 142 | + n = w1.size |
| 143 | + M[M == 0] = epsilon |
| 144 | + L = S / M |
| 145 | + if sum(L) / n <= 1 - self.rho: |
| 146 | + condition = True |
| 147 | + else: |
| 148 | + condition = False |
| 149 | + return condition |
| 150 | + |
| 151 | + def grouping(self): |
| 152 | + # Sort all activations in (nn.group) |
| 153 | + if self.group.size == 0: |
| 154 | + iter = self.group.size |
| 155 | + else: |
| 156 | + iter = np.array(self.group).shape[0] |
| 157 | + activation = np.zeros((iter)) |
| 158 | + for i in range(iter): |
| 159 | + activation[i] = self.group[i, 0] |
| 160 | + sort_index = np.array(activation).argsort()[::-1] |
| 161 | + |
| 162 | + # Check resonance of multi_w |
| 163 | + delete_index = [] |
| 164 | + for i in range(iter): |
| 165 | + # Group two target weights |
| 166 | + target_weight = self.group[sort_index[i], 1:3] |
| 167 | + if target_weight[0] == target_weight[1]: |
| 168 | + continue |
| 169 | + |
| 170 | + multi_w1 = fuzzy_and(self.w[int(target_weight[0]),:self.w.shape[1]//2], self.w[int(target_weight[1]),:self.w.shape[1]//2]) |
| 171 | + multi_w2 = fuzzy_or(self.w[int(target_weight[0]),self.w.shape[1]//2:], self.w[int(target_weight[1]),self.w.shape[1]//2:]) |
| 172 | + multi_w = np.append(multi_w1, multi_w2) |
| 173 | + |
| 174 | + condition = self.resonance_grouping(multi_w) |
| 175 | + |
| 176 | + if condition == True: # grouping |
| 177 | + self.w[min(target_weight)] = multi_w |
| 178 | + # Substitute same indices |
| 179 | + for j in range(iter): |
| 180 | + if any(self.group[j,1:3] == max(target_weight)): |
| 181 | + ind = int(np.where(self.group[j,1:3] == max(target_weight))[0]) |
| 182 | + self.group[j,ind+1] = min(target_weight) |
| 183 | + delete_index.append(max(target_weight)) # Save the substituted node number |
| 184 | + # Remove all redundant nodes |
| 185 | + self.n_category = self.n_category - len(delete_index) |
| 186 | + delete_index = np.array(delete_index).argsort()[::-1] |
| 187 | + for i in range(delete_index.size): |
| 188 | + self.Y.pop(delete_index[i]) |
| 189 | + self.w = np.delete(self.w, delete_index[i], axis=0) |
| 190 | + # Clear all groups |
| 191 | + for i in range(iter): |
| 192 | + if self.group[iter-i-1,1] == self.group[iter-i-1,2]: |
| 193 | + self.group = np.delete(self.group, iter-i+1, axis=0) |
| 194 | + # Clear same groups |
| 195 | + iter = self.group.shape[0] |
| 196 | + delete_group = [] |
| 197 | + for i in range(self.group.shape[0]-1): |
| 198 | + for j in range(i+1, self.group.shape[0]): |
| 199 | + if all(self.group[i,1:3] == self.group[j,1:3]) or all(self.group[i,1:3] == np.append(self.group[j,2], self.group[j,1])): |
| 200 | + if len(delete_group) == 0: |
| 201 | + delete_group.append(j) |
| 202 | + else: |
| 203 | + if not any(np.array(delete_group) == j): |
| 204 | + delete_group.append(j) |
| 205 | + delete_group = np.array(delete_group).argsort()[::-1] |
| 206 | + for i in range(delete_group.size): |
| 207 | + self.group = np.delete(self.group, delete_group[i], axis=0) |
| 208 | + # Match numbers in a group |
| 209 | + for j in range(delete_index.size): |
| 210 | + for i in range(self.group.shape[0]): |
| 211 | + if any(self.group[i, 1:3] > delete_index[j]): |
| 212 | + ind = np.where(self.group[i, 1:3] > delete_index[j])[0] |
| 213 | + for k in range(ind.size): |
| 214 | + self.group[i, ind[k]+1] = self.group[i, ind[k]+1] - 1 |
| 215 | + |
| 216 | + # Update all related lengths with updated weight |
| 217 | + for j in range(self.group.shape[0]): |
| 218 | + T = self.synapticStrength(self.group[j, 1:3]) |
| 219 | + self.group[j][0] = T |
| 220 | + |
| 221 | + def train(self, X): |
| 222 | + X = np.array(X) |
| 223 | + for i in range(X.shape[0]): |
| 224 | + for j in range(np.array(X[i]).shape[0]): |
| 225 | + sample = np.array(X[i][j]) |
| 226 | + self.learningNN(sample) |
| 227 | + Y = self.testDRN(X) |
| 228 | + return Y |
| 229 | + |
| 230 | + def testDRN(self, X): |
| 231 | + X = np.array(X) |
| 232 | + dataNum = X.shape[0] |
| 233 | + Y = [[] for _ in range(dataNum)] |
| 234 | + for i in range(dataNum): |
| 235 | + for j in range(np.array(X[i]).shape[0]): |
| 236 | + self.X = np.array(X[i][j]) |
| 237 | + self.activateNN() |
| 238 | + ind = np.argmax(self.Y) |
| 239 | + YY = [0 if i != ind else x for i, x in enumerate(self.Y)] |
| 240 | + Y[i].append(YY) |
| 241 | + return Y |
| 242 | + |
| 243 | + def readout(self, Y): |
| 244 | + X = [] |
| 245 | + XX = [] |
| 246 | + for i in range(Y.shape[0]): |
| 247 | + for j in range(Y[i].shape[0]): |
| 248 | + ind = np.argmax(Y[i][j]) |
| 249 | + if i == 0 and j == 0: |
| 250 | + X.append([self.w[ind][:self.w.shape[1] // 2]]) |
| 251 | + else: |
| 252 | + X.append([self.w[ind][:self.w.shape[1]//2]]) |
| 253 | + if i + 1 < Y.shape[0]: |
| 254 | + XX.append(np.array(X).squeeze(1)) |
| 255 | + X = [] |
| 256 | + XX.append(np.array(X).squeeze(1)) |
| 257 | + XXX = np.array(XX) |
| 258 | + return XXX |
| 259 | + |
| 260 | + |
| 261 | + |
| 262 | + |
| 263 | +if __name__ == '__main__': |
| 264 | + # x = np.array([np.array([[-0.0213,-0.0578],[-0.1272,0.0689],[-0.0897,-0.1516]]), |
| 265 | + # np.array([[-0.0973,-0.0610],[ -0.0161,-0.0583]]), |
| 266 | + # np.array([[0.0138,0.0760]]), |
| 267 | + # np.array([[-0.1041,-0.1227],[0.0237,0.0132]]), |
| 268 | + # np.array([[-0.0152,-0.0120],[0.0062,0.0617]])]) |
| 269 | + x = np.array([np.array([[-0.0213, -0.0578], [-0.0213, -0.0578], [-0.0897, -0.1516]]), |
| 270 | + np.array([[-0.0973,-0.0610],[ -0.0161,-0.0583]])]) |
| 271 | + model = DRN() |
| 272 | + model.train(x) |
| 273 | + Y = model.testDRN(x) |
| 274 | + print(Y) |
0 commit comments