Skip to content

Commit

Permalink
more about absolute continuity and mutual singularity
Browse files Browse the repository at this point in the history
  • Loading branch information
RemyDegenne committed Oct 21, 2024
1 parent af54d98 commit 2fc28a9
Show file tree
Hide file tree
Showing 2 changed files with 88 additions and 11 deletions.
4 changes: 2 additions & 2 deletions blueprint/src/sections/f_divergence.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1387,8 +1387,8 @@ \subsubsection{Data-processing and mean values}
\end{lemma}

\begin{proof}%\leanok
\uses{thm:fDiv_data_proc_2}
Let $u$ be the uniform distribution on $[0,1]$. Then $D_f(\mu, \nu) = D_f(\mu \times u, \nu \times u)$ (by lemma TODO about kernel with identity as first coordinate).
\uses{thm:fDiv_data_proc_2,lem:fDiv_compProd_prod_eq}
Let $u$ be the uniform distribution on $[0,1]$. Then $D_f(\mu, \nu) = D_f(\mu \times u, \nu \times u)$ (by Lemma~\ref{lem:fDiv_compProd_prod_eq}).
Let $g : [0,1] \times [0,1] \to \{0,1\}$ be the measurable function with $g(x, y) = \mathbb{I}\{y \le x\}$. We also write $g$ for the corresponding deterministic kernel. By the data-processing inequality (Theorem~\ref{thm:fDiv_data_proc_2}),
\begin{align*}
D_f(\mu \times u, \nu \times u)
Expand Down
95 changes: 86 additions & 9 deletions blueprint/src/sections/rn_deriv.tex
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,8 @@ \section{Kernel Radon-Nikodym derivative}
\section{Composition-product}


\subsection{Absolute Continuity}

\begin{lemma}
\label{lem:ac_compProd_iff}
\lean{MeasureTheory.Measure.absolutelyContinuous_compProd_of_compProd,MeasureTheory.Measure.absolutelyContinuous_compProd_of_compProd',MeasureTheory.Measure.absolutelyContinuous_of_compProd}
Expand All @@ -56,16 +58,92 @@ \section{Composition-product}
\item[(1b)] if $\mu \otimes \kappa \ll \nu \otimes \eta$ and $\kappa(x) \ne 0$ for all $x$ then $\mu \ll \nu$,
\item[(2)] if $\mu \ll \nu$ and $\mu \otimes \kappa \ll \mu \otimes \eta$ then $\mu \otimes \kappa \ll \nu \otimes \eta$.
\end{itemize}
In particular, if $\kappa(x) \ne 0$ for all $x$ then
In particular,
\begin{itemize}
\item if $\kappa(x) \ne 0$ for all $x$ then
$\mu \otimes \kappa \ll \nu \otimes \eta \iff \left( \mu \ll \nu \ \wedge \ \mu \otimes \kappa \ll \mu \otimes \eta \right)$~.
\item If $\mu \ll \nu$ then $\mu \otimes \kappa \ll \nu \otimes \eta \iff \mu \otimes \kappa \ll \mu \otimes \eta$~.
\end{itemize}

\end{lemma}

\begin{proof}\leanok
\uses{lem:kernel_properties}

\end{proof}


\begin{lemma}
\label{lem:mutuallySingular_compProd}
%\lean{}
%\leanok
\uses{lem:kernel_properties}
Let $\mu, \nu$ be two $\sigma$-finite measures on $\mathcal X$ and let $\kappa, \eta : \mathcal X \rightsquigarrow \mathcal Y$ be two finite kernels.
Let $\mu \sqcap \nu$ denote the infimum of $\mu$ and $\nu$.
Then
\begin{enumerate}
\item if $\mu \perp \nu$ then $\mu \otimes \kappa \perp \nu \otimes \eta$,
\item $\mu \otimes \kappa \perp \nu \otimes \eta \iff (\mu \sqcap \nu) \otimes \kappa \perp (\mu \sqcap \nu) \otimes \eta$, and the same holds for any measure which is equivalent to $\mu \sqcap \nu$, like $\frac{d \mu}{d \nu} \cdot \nu$~,
\item if $\mu \otimes \kappa \perp \nu \otimes \eta$ then for $(\mu \sqcap \nu)$-almost every $x$, $\kappa(x) \perp \eta(x)$.
\end{enumerate}
\end{lemma}

\begin{proof}%\leanok
\uses{}
First, let's state two facts about mutually singular measures that we will use without proof:
\begin{itemize}
\item $\mu \perp (\nu + \nu') \iff \mu \perp \nu \ \wedge \ \mu \perp \nu'$~,
\item if $\mu \ll \mu'$ and $\mu' \ll \mu$ then $\mu \perp \nu \iff \mu' \perp \nu$~.
\end{itemize}

\emph{1.} Let $s$ be a measurable set of $\mathcal X$ such that $\mu(s) = 0$ and $\nu(s^c) = 0$. One can check that the sets $s \times \mathcal Y$ and $s^c \times \mathcal Y$ demonstrate $\mu \otimes \kappa \perp \nu \otimes \eta$.

\emph{2.} Write $\mu = \frac{d \mu}{d \nu} \cdot \nu + \mu_{\perp \nu}$ and $\nu = \frac{d \nu}{d \mu} \cdot \mu + \nu_{\perp \mu}$.
Then
\begin{align*}
\mu \otimes \kappa \perp \nu \otimes \eta
&\iff \left(\frac{d \mu}{d \nu} \cdot \nu\right) \otimes \kappa \perp \left(\frac{d \nu}{d \mu} \cdot \mu\right) \otimes \eta
\\&\qquad \wedge \ \left(\frac{d \mu}{d \nu} \cdot \nu\right) \otimes \kappa \perp \nu_{\perp \mu} \otimes \eta
\\&\qquad \wedge \ \mu_{\perp \nu} \otimes \kappa \perp \left(\frac{d \nu}{d \mu} \cdot \mu\right) \otimes \eta
\\&\qquad \wedge \ \mu_{\perp \nu} \otimes \kappa \perp \nu_{\perp \mu} \otimes \eta
\end{align*}
The three last lines are true since $\mu \perp \nu_{\perp \mu}$ and $\mu_{\perp \nu} \perp \nu$. Only the first line remains.
It suffices then to prove that $\mu \sqcap \nu$, $\frac{d \mu}{d \nu} \cdot \nu$ and $\frac{d \nu}{d \mu} \cdot \mu$ are equivalent.

TODO

\emph{3.} By 2. it suffices to consider the case $\nu = \mu$ and show that for $\mu$-almost every $x$, $\kappa(x) \perp \eta(x)$.
Let $s$ be a measurable set of $\mathcal X \times \mathcal Y$ such that $(\mu \otimes \kappa)(s) = 0$ and $(\mu \otimes \eta)(s^c) = 0$.
Then
\begin{align*}
0 &= (\mu \otimes \kappa)(s)
\\
&= \int_{x} \kappa(x)(\{y \mid (x, y) \in s\}) \partial \mu
\: .
\end{align*}
Hence for $\mu$-almost all $x$, $\kappa(x)(\{y \mid (x, y) \in s\}) = 0$. Similarly, for $\mu$-almost all $x$, $\eta(x)(\{y \mid (x, y) \in s^c\}) = 0$. Since $\{y \mid (x, y) \in s^c\} = \{y \mid (x, y) \in s\}^c$, we have a measurable set witnessing $\kappa(x) \perp \eta(x)$ for $\mu$-almost all $x$.
\end{proof}



\subsection{Radon-Nikodym derivative and singular part}

\begin{lemma}
\label{lem:singularPart_compProd}
%\lean{}
%\leanok
\uses{lem:kernel_properties}
Let $\mu, \nu$ be two $\sigma$-finite measures on $\mathcal X$ and let $\kappa, \eta : \mathcal X \rightsquigarrow \mathcal Y$ be two s-finite kernels.
We denote $\frac{d\mu}{d\nu}\cdot \nu$ by $\mu_{\parallel \nu}$.
Then
\begin{align*}
\mu \otimes \kappa \ll \nu \otimes \eta
\iff \left( \mu \ll \nu \ \wedge \ \mu \otimes \kappa \ll \mu \otimes \eta \right)
(\mu \otimes \kappa)_{\perp (\nu \otimes \eta)} = \mu_{\perp \nu} \otimes \kappa + (\mu_{\parallel \nu} \otimes \kappa)_{\perp (\mu_{\parallel \nu} \otimes \eta)}
\: .
\end{align*}
\end{lemma}

\begin{proof}\leanok
\uses{lem:kernel_properties}
\begin{proof}%\leanok
\uses{}

\end{proof}

Expand All @@ -76,8 +154,8 @@ \section{Composition-product}
\leanok
\uses{}
Let $\mu, \nu$ be two finite measures on $\mathcal X$ and let $\kappa, \eta : \mathcal X \rightsquigarrow \mathcal Y$ be two finite kernels.
Let $\mu' = \left(\frac{\partial \mu}{\partial \nu}\right) \cdot \nu$.
Then for $(\nu \otimes \eta)$-almost all $z$, $\frac{d (\mu' \otimes \kappa)}{d (\nu \otimes \eta)}(z) = \frac{d (\mu \otimes \kappa)}{d (\nu \otimes \eta)}(z)$.
Let $\mu_{\parallel \nu} = \left(\frac{\partial \mu}{\partial \nu}\right) \cdot \nu$.
Then for $(\nu \otimes \eta)$-almost all $z$, $\frac{d (\mu_{\parallel \nu} \otimes \kappa)}{d (\nu \otimes \eta)}(z) = \frac{d (\mu \otimes \kappa)}{d (\nu \otimes \eta)}(z)$.
\end{lemma}

\begin{proof} \leanok
Expand All @@ -96,6 +174,7 @@ \section{Composition-product}
\begin{proof} \leanok
\uses{}
We can suppose $\mu \ll \nu$ without loss of generality (by Lemma~\ref{lem:rnDeriv_eq_ac_left}).
That implies $\mu \otimes \kappa \ll \nu \otimes \kappa$.
It suffices to show that the integrals of the two functions agree on all sets in the $\pi$-system of products of measurable sets. Let $s, t$ be two measurable sets of $\mathcal X$ and $\mathcal Y$ respectively.
\begin{align*}
\int_{p \in s \times t} \frac{d (\mu \otimes \kappa)}{d (\nu \otimes \kappa)}(p) \partial(\nu \otimes \kappa)
Expand Down Expand Up @@ -361,8 +440,6 @@ \section{Sigma-algebras}

\begin{proof}\leanok
\uses{lem:rnDeriv_map_eq_condexp}
TODO: the current Lean proof is not the proof presented here (but a direct computation).

The restriction $\mu_{| \mathcal A}$ is the map of $\mu$ by the identity, seen as a function from $\mathcal X$ with its $\sigma$-algebra to $\mathcal X$ with $\mathcal{A}$.
We can thus apply Lemma~\ref{lem:rnDeriv_map_eq_condexp}.
\end{proof}
Expand Down

0 comments on commit 2fc28a9

Please sign in to comment.