Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MRG] ot.lp reorganizing #714

Merged
merged 12 commits into from
Jan 20, 2025
2 changes: 1 addition & 1 deletion CONTRIBUTORS.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ The contributors to this library are:
* [Camille Le Coz](https://www.linkedin.com/in/camille-le-coz-8593b91a1/) (EMD2 debug)
* [Eduardo Fernandes Montesuma](https://eddardd.github.io/my-personal-blog/) (Free support sinkhorn barycenter)
* [Theo Gnassounou](https://github.com/tgnassou) (OT between Gaussian distributions)
* [Clément Bonet](https://clbonet.github.io) (Wassertstein on circle, Spherical Sliced-Wasserstein)
* [Clément Bonet](https://clbonet.github.io) (Wasserstein on circle, Spherical Sliced-Wasserstein)
* [Ronak Mehta](https://ronakrm.github.io) (Efficient Discrete Multi Marginal Optimal Transport Regularization)
* [Xizheng Yu](https://github.com/x12hengyu) (Efficient Discrete Multi Marginal Optimal Transport Regularization)
* [Sonia Mazelet](https://github.com/SoniaMaz8) (Template based GNN layers)
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ POT provides the following generic OT solvers (links to examples):
* [Efficient Discrete Multi Marginal Optimal Transport Regularization](https://pythonot.github.io/auto_examples/others/plot_demd_gradient_minimize.html) [50].
* [Several backends](https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends) for easy use of POT with [Pytorch](https://pytorch.org/)/[jax](https://github.com/google/jax)/[Numpy](https://numpy.org/)/[Cupy](https://cupy.dev/)/[Tensorflow](https://www.tensorflow.org/) arrays.
* [Smooth Strongly Convex Nearest Brenier Potentials](https://pythonot.github.io/auto_examples/others/plot_SSNB.html#sphx-glr-auto-examples-others-plot-ssnb-py) [58], with an extension to bounding potentials using [59].
* Gaussian Mixture Model OT [69]
* [Gaussian Mixture Model OT](https://pythonot.github.io/auto_examples/others/plot_GMMOT_plan.html#sphx-glr-auto-examples-others-plot-gmmot-plan-py) [69].
* [Co-Optimal Transport](https://pythonot.github.io/auto_examples/others/plot_COOT.html) [49] and
[unbalanced Co-Optimal Transport](https://pythonot.github.io/auto_examples/others/plot_learning_weights_with_COOT.html) [71].
* Fused unbalanced Gromov-Wasserstein [70].
Expand Down
1 change: 1 addition & 0 deletions RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
- Implement CG solvers for partial FGW (PR #687)
- Added feature `grad=last_step` for `ot.solvers.solve` (PR #693)
- Automatic PR labeling and release file update check (PR #704)
- Reorganize sub-module `ot/lp/__init__.py` into separate files (PR #714)

#### Closed issues
- Fixed `ot.mapping` solvers which depended on deprecated `cvxpy` `ECOS` solver (PR #692, Issue #668)
Expand Down
2 changes: 1 addition & 1 deletion ot/gmm.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
from .backend import get_backend
from .lp import emd2, emd
import numpy as np
from .lp import dist
from .utils import dist
from .gaussian import bures_wasserstein_mapping


Expand Down
6 changes: 3 additions & 3 deletions ot/gromov/_partial.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,7 @@ def partial_gromov_wasserstein(
if m is None:
m = min(np.sum(p), np.sum(q))
elif m < 0:
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
elif m > min(np.sum(p), np.sum(q)):
raise ValueError(
"Problem infeasible. Parameter m should lower or"
Expand Down Expand Up @@ -654,7 +654,7 @@ def partial_fused_gromov_wasserstein(
if m is None:
m = min(np.sum(p), np.sum(q))
elif m < 0:
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
elif m > min(np.sum(p), np.sum(q)):
raise ValueError(
"Problem infeasible. Parameter m should lower or"
Expand Down Expand Up @@ -1213,7 +1213,7 @@ def entropic_partial_gromov_wasserstein(
if m is None:
m = min(nx.sum(p), nx.sum(q))
elif m < 0:
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
elif m > min(nx.sum(p), nx.sum(q)):
raise ValueError(
"Problem infeasible. Parameter m should lower or"
Expand Down
6 changes: 3 additions & 3 deletions ot/gromov/_quantized.py
Original file line number Diff line number Diff line change
Expand Up @@ -375,7 +375,7 @@ def get_graph_partition(
raise ValueError(
f"""
Unknown `part_method='{part_method}'`. Use one of:
{'random', 'louvain', 'fluid', 'spectral', 'GW', 'FGW'}.
{"random", "louvain", "fluid", "spectral", "GW", "FGW"}.
"""
)
return nx.from_numpy(part, type_as=C0)
Expand Down Expand Up @@ -447,7 +447,7 @@ def get_graph_representants(C, part, rep_method="pagerank", random_state=0, nx=N
raise ValueError(
f"""
Unknown `rep_method='{rep_method}'`. Use one of:
{'random', 'pagerank'}.
{"random", "pagerank"}.
"""
)

Expand Down Expand Up @@ -953,7 +953,7 @@ def get_partition_and_representants_samples(
else:
raise ValueError(
f"""
Unknown `method='{method}'`. Use one of: {'random', 'kmeans'}
Unknown `method='{method}'`. Use one of: {"random", "kmeans"}
"""
)

Expand Down
Loading
Loading