Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix normed dtype #557

Merged
merged 4 commits into from
Feb 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 3 additions & 7 deletions src/sed/binning/binning.py
Original file line number Diff line number Diff line change
Expand Up @@ -465,6 +465,7 @@ def normalization_histogram_from_timed_dataframe(
axis: str,
bin_centers: np.ndarray,
time_unit: float,
**kwds,
) -> xr.DataArray:
"""Get a normalization histogram from a timed dataframe.

Expand All @@ -475,17 +476,12 @@ def normalization_histogram_from_timed_dataframe(
histogram.
bin_centers (np.ndarray): Bin centers used for binning of the axis.
time_unit (float): Time unit the data frame entries are based on.
**kwds: Additional keyword arguments passed to the bin_dataframe function.

Returns:
xr.DataArray: Calculated normalization histogram.
"""
bins = df[axis].map_partitions(
pd.cut,
bins=bin_centers_to_bin_edges(bin_centers),
)

histogram = df[axis].groupby([bins]).count().compute().values * time_unit
# histogram = bin_dataframe(df, axes=[axis], bins=[bin_centers]) * time_unit
histogram = bin_dataframe(df, axes=[axis], bins=[bin_centers], **kwds) * time_unit

data_array = xr.DataArray(
data=histogram,
Expand Down
49 changes: 25 additions & 24 deletions src/sed/core/processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -2283,6 +2283,8 @@ def compute(
)
# if the axes are named correctly, xarray figures out the normalization correctly
self._normalized = self._binned / self._normalization_histogram
# Set datatype of binned data
self._normalized.data = self._normalized.data.astype(self._binned.data.dtype)
self._attributes.add(
self._normalization_histogram.values,
name="normalization_histogram",
Expand Down Expand Up @@ -2353,36 +2355,35 @@ def get_normalization_histogram(

if isinstance(df_partitions, int):
df_partitions = list(range(0, min(df_partitions, self._dataframe.npartitions)))

if use_time_stamps or self._timed_dataframe is None:
if df_partitions is not None:
self._normalization_histogram = normalization_histogram_from_timestamps(
self._dataframe.partitions[df_partitions],
axis,
self._binned.coords[axis].values,
self._config["dataframe"]["columns"]["timestamp"],
)
dataframe = self._dataframe.partitions[df_partitions]
else:
self._normalization_histogram = normalization_histogram_from_timestamps(
self._dataframe,
axis,
self._binned.coords[axis].values,
self._config["dataframe"]["columns"]["timestamp"],
)
dataframe = self._dataframe
self._normalization_histogram = normalization_histogram_from_timestamps(
df=dataframe,
axis=axis,
bin_centers=self._binned.coords[axis].values,
time_stamp_column=self._config["dataframe"]["columns"]["timestamp"],
)
else:
if df_partitions is not None:
self._normalization_histogram = normalization_histogram_from_timed_dataframe(
self._timed_dataframe.partitions[df_partitions],
axis,
self._binned.coords[axis].values,
self._config["dataframe"]["timed_dataframe_unit_time"],
)
timed_dataframe = self._timed_dataframe.partitions[df_partitions]
else:
self._normalization_histogram = normalization_histogram_from_timed_dataframe(
self._timed_dataframe,
axis,
self._binned.coords[axis].values,
self._config["dataframe"]["timed_dataframe_unit_time"],
)
timed_dataframe = self._timed_dataframe
self._normalization_histogram = normalization_histogram_from_timed_dataframe(
df=timed_dataframe,
axis=axis,
bin_centers=self._binned.coords[axis].values,
time_unit=self._config["dataframe"]["timed_dataframe_unit_time"],
hist_mode=self.config["binning"]["hist_mode"],
mode=self.config["binning"]["mode"],
pbar=self.config["binning"]["pbar"],
n_cores=self.config["core"]["num_cores"],
threads_per_worker=self.config["binning"]["threads_per_worker"],
threadpool_api=self.config["binning"]["threadpool_API"],
)

return self._normalization_histogram

Expand Down
2 changes: 2 additions & 0 deletions tests/test_processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -1008,6 +1008,8 @@ def test_compute_with_normalization() -> None:
processor.binned.data,
(processor.normalized * processor.normalization_histogram).data,
)
# check dtype
assert processor.normalized.dtype == processor.binned.dtype
# bin only second dataframe partition
result2 = processor.compute(
bins=bins,
Expand Down