Skip to content

Commit

Permalink
update data summary slides
Browse files Browse the repository at this point in the history
  • Loading branch information
mahkamehsalehi committed Sep 26, 2024
1 parent 146adb7 commit f2028ba
Show file tree
Hide file tree
Showing 2 changed files with 39 additions and 21 deletions.
25 changes: 17 additions & 8 deletions docs/articles/data_summary.html
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
<link href="data_summary_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.4.553">

<title>Lee et al.&nbsp;(2023)</title>
<title>Data Summary</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
Expand Down Expand Up @@ -330,7 +330,7 @@
<div class="slides">

<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Lee et al.&nbsp;(2023)</h1>
<h1 class="title">Data Summary</h1>

<div class="quarto-title-authors">
</div>
Expand All @@ -339,7 +339,7 @@ <h1 class="title">Lee et al.&nbsp;(2023)</h1>
<section id="data-source" class="slide level2 smaller">
<h2>Data Source</h2>

<img data-src="images/Capture.PNG" class="r-stretch"><p>The data used comes from the study titled “Population-level impacts of antibiotic usage on the human gut microbiome”, published in Nature Communications in 2023 by Lee et al.&nbsp;This large-scale study includes a total of 9,251 samples collected from various human body sites and countries.</p>
<img data-src="images/Capture.PNG" class="r-stretch"><p>This large-scale study includes a total of 9,251 samples collected from various human body sites and countries.</p>
</section>
<section id="aims-of-the-study" class="slide level2 smaller">
<h2>Aims of the study</h2>
Expand All @@ -351,11 +351,17 @@ <h2>Aims of the study</h2>
<section id="methods-data-collection-compilation" class="slide level2 smaller">
<h2>Methods: Data Collection &amp; Compilation</h2>
<ul>
<li><p>Manually curated ARG families from CARD database (n=752)&nbsp; &nbsp;</p></li>
<li><p><em>Raw Illumina sequencing reads from NCBI or EMBL using Kingfisher-download</em></p></li>
<li><p>Metagenomic assemblies retrieved from <a href="http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html">Pasolli et al.</a></p></li>
</ul>
<!-- -->
<ul>
<li><p>6104 adult gut metagenome samples from 20 countries after refinning</p></li>
<li><p>curatedMetagenomeData R package for retrieving the sample metadata</p></li>
<li><p>Raw Illumina sequencing reads from NCBI or EMBL using Kingfisher-download</p></li>
<li><p>Metagenomic assemblies retrieved from <a href="http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html">Pasolli et al.</a></p></li>
</ul>
<!-- -->
<ul>
<li>Manually curated ARG families from CARD database (n=752)&nbsp; &nbsp;</li>
</ul>
</section>
<section id="original-data-sample-distribution" class="slide level2 smaller">
Expand Down Expand Up @@ -383,10 +389,13 @@ <h2>Original Data Sample Distribution</h2>
<h2>Data Subsetting</h2>
<p>The data has been carefully subsetted to include samples that meet specific criteria, such as:</p>
<ul>
<li><p><strong>SCGs:</strong> Selected samples with all <strong>40 Single-Copy Genes (SCGs)</strong> recovered (<code>Tier_2.Recover_all_40_SCGs</code>).</p></li>
<li><p><strong>Body Site:</strong> Limited to <strong>stool samples</strong> (<code>BodySite</code>).</p></li>
<li><p><strong>Age Category:</strong> Included only <strong>adult subjects</strong> (<code>AgeCategory</code>).</p></li>
<li><p><strong>Health Status:</strong> Focused on <strong>healthy individuals</strong> not currently using antibiotics (<code>Disease</code> and <code>antibiotic_current_use_binary</code>).</p></li>
<li><p><strong>Age Category:</strong> Included only <strong>adult subjects</strong> (<code>AgeCategory</code>).</p></li>
</ul>
<!-- -->
<ul>
<li><strong>SCGs:</strong> Selected samples with all <strong>40 Single-Copy Genes (SCGs)</strong> recovered</li>
</ul>
<p>This subset of the data, now represented as a <code>TreeSummarizedExperiment</code> (TSE) object, is optimized for further analysis and is available for advanced exploration of the antibiotic resistance gene (ARG) load, diversity, and related metadata.<br>
To explore the metadata and access the object, visit <a href="https://github.com/microbiome/data/blob/main/Lee2023/README.md">this link</a>.</p>
Expand Down
35 changes: 22 additions & 13 deletions docs/articles/data_summary.qmd
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
---
title: Lee et al. (2023)
title: Data Summary
format:
revealjs:
theme: white
Expand All @@ -14,7 +14,7 @@ format:

![](images/Capture.PNG)

The data used comes from the study titled "Population-level impacts of antibiotic usage on the human gut microbiome", published in Nature Communications in 2023 by Lee et al. This large-scale study includes a total of 9,251 samples collected from various human body sites and countries.
This large-scale study includes a total of 9,251 samples collected from various human body sites and countries.

## Aims of the study {.smaller}

Expand All @@ -24,15 +24,21 @@ The data used comes from the study titled "Population-level impacts of antibioti

## Methods: Data Collection & Compilation {.smaller}

- Manually curated ARG families from CARD database (n=752)   
- *Raw Illumina sequencing reads from NCBI or EMBL using Kingfisher-download*

- Metagenomic assemblies retrieved from [Pasolli et al.](http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html)

```{=html}
<!-- -->
```
- 6104 adult gut metagenome samples from 20 countries after refinning

- curatedMetagenomeData R package for retrieving the sample metadata

- Raw Illumina sequencing reads from NCBI or EMBL using Kingfisher-download

- Metagenomic assemblies retrieved from [Pasolli et al.](http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html)
```{=html}
<!-- -->
```
- Manually curated ARG families from CARD database (n=752)   

## Original Data Sample Distribution {.smaller}

Expand Down Expand Up @@ -132,18 +138,21 @@ ggplot(country_sample_data, aes(x = Number_of_Samples, y = Country)) +

The data has been carefully subsetted to include samples that meet specific criteria, such as:

- **SCGs:** Selected samples with all **40 Single-Copy Genes (SCGs)** recovered (`Tier_2.Recover_all_40_SCGs`).

- **Body Site:** Limited to **stool samples** (`BodySite`).

- **Health Status:** Focused on **healthy individuals** not currently using antibiotics (`Disease` and `antibiotic_current_use_binary`).

- **Age Category:** Included only **adult subjects** (`AgeCategory`).

- **Health Status:** Focused on **healthy individuals** not currently using antibiotics (`Disease` and `antibiotic_current_use_binary`).
```{=html}
<!-- -->
```
- **SCGs:** Selected samples with all **40 Single-Copy Genes (SCGs)** recovered

This subset of the data, now represented as a `TreeSummarizedExperiment` (TSE) object, is optimized for further analysis and is available for advanced exploration of the antibiotic resistance gene (ARG) load, diversity, and related metadata. \
This subset of the data, now represented as a `TreeSummarizedExperiment` (TSE) object, is optimized for further analysis and is available for advanced exploration of the antibiotic resistance gene (ARG) load, diversity, and related metadata.\
To explore the metadata and access the object, visit [this link](https://github.com/microbiome/data/blob/main/Lee2023/README.md).

## Sample Metadata {.smaller}
## Sample Metadata {.smaller}

The subsetted dataset contains key metadata that provides context to each sample.

Expand Down Expand Up @@ -197,7 +206,7 @@ combined_summary_df %>%
```

## Distribution of Sample Metadata {.smaller}
## Distribution of Sample Metadata {.smaller}

![](images/country.png)

Expand All @@ -223,7 +232,7 @@ combined_summary_df %>%

![](images/median_read_length.png)

## NDARO Dataset {.smaller}
## NDARO Dataset {.smaller}

NDARO is a collaborative, cross-agency, centralized hub for researchers to access AMR data to facilitate real-time surveillance of pathogenic organisms. NDARO is part of the National Action Plan for Combating Antibiotic-Resistant Bacteria developed by the White House in 2015.

Expand Down

0 comments on commit f2028ba

Please sign in to comment.