-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
fa95308
commit d05675b
Showing
3 changed files
with
167 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
import itertools | ||
import re | ||
import math | ||
from pathlib import Path | ||
import glob | ||
import os | ||
from datetime import datetime | ||
|
||
import cv2 | ||
import numpy as np | ||
import xlsxwriter | ||
from PyQt5.QtGui import QImageReader | ||
|
||
from Algorithms.Minutiae.Libs.matching import match_tuples | ||
from Algorithms.Minutiae.Libs.minutiae import generate_tuple_profile | ||
# Import Minutiae | ||
from Algorithms.Minutiae.Minutiae_OBJ import * | ||
# Import SIFT | ||
from Algorithms.SIFT.SIFT_OBJ import SIFT | ||
|
||
# | ||
# # collect Data Here | ||
workbook = xlsxwriter.Workbook(f"Data_Subject2.xlsx") | ||
worksheet = workbook.add_worksheet() | ||
worksheet.set_column(0, 13, 50) | ||
# Set titles here | ||
sheet_titles = {0: "Fingerprint image", | ||
|
||
1: "Alteration Type", | ||
|
||
2: "Match Score (SIFT)", | ||
3: "Time (SIFT)", | ||
4: "Verdict (SIFT)", | ||
|
||
5: "Match Score (Minutiae)", | ||
6: "Time (Minutiae)", | ||
7: "Verdict (Minutiae)", | ||
} | ||
for value, title in enumerate(sheet_titles.values()): | ||
worksheet.write(0, value, title) | ||
|
||
# Glob Here | ||
file_pattern = re.compile(r'.*?(\d+).*?') | ||
def get_order(file): | ||
match = file_pattern.match(Path(file).name) | ||
if not match: | ||
return math.inf | ||
return int(match.groups()[0]) | ||
|
||
# Path to Real | ||
path_to_real = "C:\\Users\\Ugo\\Desktop\\Fingerprint-Matching-System\\SOCOFing\\Real\\" | ||
# Get Real Images | ||
real_images = [] | ||
for img in sorted(glob.glob(f"{path_to_real}*.BMP"), | ||
key=get_order): | ||
real_images.append(img.strip(path_to_real)) | ||
|
||
# # Get Altered Images | ||
path_to_altered = "C:\\Users\\Ugo\\Desktop\\Fingerprint-Matching-System\\SOCOFing\\Altered\\Altered-Easy\\" | ||
altered_easy = [] | ||
for img in sorted(glob.glob(f"{path_to_altered}*.BMP"), key=get_order): | ||
# n= cv2.imread(img) | ||
altered_easy.append(img.strip(path_to_altered)) | ||
|
||
counter = 0 | ||
counter_end = 3 | ||
# Initial SIFT | ||
sift_query = SIFT() | ||
sift_train = SIFT() | ||
row= 1 | ||
altered_type ="Easy" | ||
verdict = "" | ||
verdict_minutiae = "" | ||
# Loop to pairs | ||
for i in range(5,6): # where to end multiply by 6 control where to start and end, | ||
for j in range(counter, counter_end): | ||
MIN_MATCH_COUNT = 18 | ||
query = cv2.imread(path_to_real+real_images[i],0) | ||
train = cv2.imread(path_to_altered+altered_easy[j],0) | ||
kp1, des1 = sift_query.computeKeypointsAndDescriptors(query) | ||
kp2, des2 = sift_train.computeKeypointsAndDescriptors(train) | ||
|
||
start = datetime.now() | ||
|
||
# # Initialize and use FLANN | ||
FLANN_INDEX_KDTREE = 1 | ||
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) | ||
search_params = dict(checks=37) | ||
flann = cv2.FlannBasedMatcher(index_params, search_params) | ||
matches = flann.knnMatch(des1, des2, k=2) | ||
# | ||
# # Lowe's ratio test | ||
good = set() | ||
for m, n in matches: | ||
if m.distance < 0.6 * n.distance: | ||
good.add(m) | ||
if len(good) > MIN_MATCH_COUNT: | ||
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2) | ||
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) | ||
|
||
M = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)[0] | ||
|
||
time_taken = datetime.now() - start | ||
# Verdict Here | ||
if len(good) > 35: | ||
verdict = "Fingerprints/Images Are A Good Match!" | ||
elif len(good) > 18: | ||
verdict = "Fingerprints/Images Match With A Low Score!" | ||
else: | ||
verdict = "Not enough matches are found" | ||
|
||
# MINUTIAE | ||
start = datetime.now() | ||
coor_termination1, coor_bifurcation1, total_bif_term1 = detectAndComputeMinutiae(path_to_real+real_images[i]) | ||
coor_termination2, coor_bifurcation2, total_bif_term2 = detectAndComputeMinutiae(path_to_altered+altered_easy[j]) | ||
# Image Profiles | ||
img_profile1_term = generate_tuple_profile(coor_termination1) # Image 1 Termination | ||
img_profile1_bif = generate_tuple_profile(coor_bifurcation1) # Image 1 Bifurcation | ||
# This was created only for display purposes | ||
termin_disp = img_profile1_term | ||
bif_disp = img_profile1_bif | ||
# Image 2 Profiles | ||
img_profile2_term = generate_tuple_profile(coor_termination2) | ||
img_profile2_bif = generate_tuple_profile(coor_bifurcation2) | ||
# For caluclation process | ||
calc_bif_term1 = generate_tuple_profile(total_bif_term1) | ||
calc_bif_term2 = generate_tuple_profile(total_bif_term2) | ||
# Load Images here (should already be loaded when tranformed into class) | ||
# # Common points Termination | ||
common_points_query_termination, common_points_train_termination = match_tuples(img_profile1_term, | ||
img_profile2_term) | ||
common_points_query_bifurcation, common_points_train_bifurcation = match_tuples(img_profile1_bif, | ||
img_profile2_bif) | ||
|
||
common_points_both_train, common_points_both_query = match_tuples(calc_bif_term1, calc_bif_term2) | ||
|
||
minutiae_value = len(common_points_both_query) | ||
# Time ends here | ||
time_taken_minutiae = datetime.now() - start | ||
# Minutiae Verdict | ||
if minutiae_value >= 7: | ||
verdict_minutiae = "Fingerprints Are A Good Match" | ||
elif minutiae_value >= 3: | ||
verdict_minutiae= "Fingerprints Match With A Really Low Score" | ||
else: | ||
verdict_minutiae="Fingerprints do not match" | ||
# Record DATA | ||
# Write Query Image Here | ||
worksheet.write(row, 0, f"{real_images[i]}\n{altered_easy[j]}") | ||
# Add Alteration Type | ||
worksheet.write(row, 1, altered_type) | ||
#### SIFT #### | ||
worksheet.write(row, 2, str(len(good))) | ||
# Time | ||
worksheet.write(row, 3, time_taken) | ||
# Verdict | ||
worksheet.write(row, 4, verdict) | ||
#--------- MINUTIAE --------------- | ||
worksheet.write(row,5,str(len(common_points_both_query))) | ||
worksheet.write(row,6,time_taken_minutiae) | ||
worksheet.write(row,7,verdict_minutiae) | ||
row = row + 2 | ||
counter += 3 | ||
counter_end += 3 | ||
|
||
print("Saved Workbook successfully") | ||
workbook.close() |
Binary file renamed
BIN
+5.46 KB
.../Data/Subject 2/Data R Middle Finger.xlsx → Algorithms/GUI/Data_Subject.xlsx
Binary file not shown.
Binary file renamed
BIN
+5.55 KB
...thms/Data/Subject 2/Data right_index.xlsx → Algorithms/GUI/Data_Subject2.xlsx
Binary file not shown.