Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Example refractor #8

Merged
merged 24 commits into from
Feb 11, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
9 changes: 9 additions & 0 deletions .gitmodules
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
[submodule "extern/googletest"]
path = extern/googletest
url = https://github.com/google/googletest
[submodule "extern/nanobench"]
path = extern/nanobench
url = https://github.com/martinus/nanobench
[submodule "extern/mimalloc"]
path = extern/mimalloc
url = https://github.com/microsoft/mimalloc
6 changes: 6 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,14 @@ option(MAGNETRON_DEBUG "Enable debug mode" OFF) # En
option(MAGNETRON_CPU_APPROX_MATH "Trade precision for performance" ON) # (CPU only) Enable SIMD math function approximations. Greatly increases performance. Try disabling if you encounter numerical instability. Does NOT enable -ffast-math or similar compiler flags.
option(MAGNETRON_ENABLE_CUDA "Enable CUDA support" ON) # Enable CUDA support
option(MAGNETRON_ENABLE_ACCELERATE "Use Apple's Accelerate framework" ON) # Use Apple's Accelerate framework for optimized math functions (only on Apple platforms)
option(MAGNETRON_ENABLE_MIMALLOC "Use mimalloc as memory allocator" ON) # Use mimalloc as memory allocator for faster memory allocation

set(MAGNETRON_CUDA_COMPILER "/usr/local/cuda-12.6/bin/nvcc" CACHE STRING "Path to the CUDA compiler") # Set to your CUDA compiler path
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)

if (${MAGNETRON_BUILD_TESTS})
enable_testing()
add_subdirectory(extern/googletest)
endif()

if (${MAGNETRON_BUILD_TESTS} OR ${MAGNETRON_BUILD_BENCHMARKS} OR ${MAGNETRON_BUILD_FUZZERS})
Expand All @@ -45,6 +47,10 @@ if (${MAGNETRON_ENABLE_ACCELERATE} AND APPLE)
include(cmake/accelerate.cmake)
endif()

if (${MAGNETRON_ENABLE_MIMALLOC})
include(cmake/allocator.cmake)
endif()

if (${MAGNETRON_BUILD_TESTS})
add_subdirectory(test)
endif()
Expand Down
2 changes: 1 addition & 1 deletion benchmark/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
add_executable(magnetron_benchmark benchmarks.cpp)
target_link_libraries(magnetron_benchmark magnetron)
target_include_directories(magnetron_benchmark PRIVATE ../magnetron)
target_include_directories(magnetron_benchmark PRIVATE nanobench)
target_include_directories(magnetron_benchmark PRIVATE ../extern/nanobench/src/include)

add_executable(magnetron_profile profile.cpp)
target_link_libraries(magnetron_profile magnetron)
Expand Down
77 changes: 31 additions & 46 deletions benchmark/benchmarks.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,59 +5,44 @@
#include <magnetron.h>
#define ANKERL_NANOBENCH_IMPLEMENT
#include <nanobench.h>
#include <thread>

#include "magnetron_internal.h"

static auto bench_cpu_compute(std::int64_t numel_per_dim) -> void {
static auto bench_op(ankerl::nanobench::Bench& bench, std::int64_t numel_per_dim) -> void {
mag_device_descriptor_t desc {};
desc.type = MAG_COMPUTE_DEVICE_TYPE_CPU;
mag_ctx_t* ctx = mag_ctx_create2(&desc);
mag_tensor_t* A = mag_tensor_create_2d(ctx, MAG_DTYPE_F32, numel_per_dim, numel_per_dim);
mag_tensor_fill(A, 1.0f);
mag_tensor_t* B = mag_tensor_create_2d(ctx, MAG_DTYPE_F32, numel_per_dim, numel_per_dim);
mag_tensor_fill(A, 3.0f);
bench.run("Parallel Elems = " + std::to_string(A->numel), [&] {
mag_tensor_t* R = mag_add(A, B);
ankerl::nanobench::doNotOptimizeAway(R);
mag_tensor_decref(R);
});

ankerl::nanobench::doNotOptimizeAway(ctx);
mag_tensor_decref(B);
mag_tensor_decref(A);
mag_ctx_destroy(ctx);
}

auto main() -> int {
ankerl::nanobench::Bench bench {};
bench.title("Parallel MM Big Tensor | Numel per Dim: " + std::to_string(numel_per_dim))
bench.title("Parallel Big Tensor")
.unit("MM")
.warmup(100)
.relative(true)
.performanceCounters(true);

std::cout << "Benchmarking Parallel MM on CPU with Numel per Dim: " << numel_per_dim << std::endl;

auto exec_bench = [&](std::uint32_t threads) {
mag_device_descriptor_t desc {};
desc.type = MAG_COMPUTE_DEVICE_TYPE_CPU;
desc.thread_count = threads;
mag_ctx_t* ctx = mag_ctx_create2(&desc);
mag_tensor_t* A = mag_tensor_create_2d(ctx, MAG_DTYPE_F32, numel_per_dim, numel_per_dim);
mag_tensor_fill_random_normal(A, 0.0f, 1.0f);
mag_tensor_t* B = mag_tensor_create_2d(ctx, MAG_DTYPE_F32, numel_per_dim, numel_per_dim);
mag_tensor_fill_random_normal(B, 0.0f, 1.0f);
bench.run("Parallel MM on " + std::to_string(threads) + " threads, Elems = " + std::to_string(A->numel), [&] {
mag_tensor_t* R = mag_matmul(A, B);
ankerl::nanobench::doNotOptimizeAway(R);
mag_tensor_decref(R);
});

ankerl::nanobench::doNotOptimizeAway(ctx);
mag_tensor_decref(B);
mag_tensor_decref(A);
mag_ctx_destroy(ctx);
};

std::uint32_t num_threads = std::max(1u, std::thread::hardware_concurrency());

for (std::uint32_t i=1; i <= num_threads;) {
exec_bench(i);
if (i == 1) ++i;
else i += 2;
}
}

auto main() -> int {
//bench_cpu_compute(10000);
bench_cpu_compute(1000);
bench_cpu_compute(750);
bench_cpu_compute(500);
bench_cpu_compute(250);
bench_cpu_compute(100);
bench_cpu_compute(10);
bench_cpu_compute(2);
//bench_cpu_compute(250);
bench_op(bench, 15000);
bench_op(bench, 10000);
bench_op(bench, 1000);
bench_op(bench, 750);
bench_op(bench, 500);
bench_op(bench, 250);
bench_op(bench, 100);
bench_op(bench, 10);
bench_op(bench, 4);
return 0;
}
Loading
Loading