Attention Kalman Filter for Short Horizon Prediction and Resource Allocation under Highly Variable Cloud Workloads
This readme is a work in progress and may not yet cover all the features outlined in the papers above
vim config/testbed.properties
Set Tracker properties
pip install -r requirements.txt
python src/twitter_search.py
sh src/kafka/setup.sh -h
python -m flask run
OR
python src/kafka/consumer.py
sh src/kafka/setup.sh --runtest
sh src/kafka/setup.sh --runtests 10
ls data_tracker.pickle.csv*
ls data/
sed -i s/tracker.type=.*/tracker.type=EKF-PCA/ config/testbed.properties
python src/ekf.py --testpcacsv -f data/twitter_trace.csv -x 'Tweet Count' -y 'Tweet Count' > out_ekfpca.txt
tail out_ekfpca.txt
python src/adversarial_tester.py -f data/analysis/data_kf_2_node_metrics.csv -x "ksurf-master CPU (m)"
or simply
python src/adversarial_tester.py