Skip to content

MSRG/ksurf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Attention Kalman Filter for Short Horizon Prediction and Resource Allocation under Highly Variable Cloud Workloads

What is KF-PCA

Papers on Ksurf & Ksurf+

Disclaimer

This readme is a work in progress and may not yet cover all the features outlined in the papers above

Setup

vim config/testbed.properties

Set Tracker properties

If not installed

pip install -r requirements.txt

Get most recent data from Twitter API

python src/twitter_search.py

How to run the Kafka estimator

sh src/kafka/setup.sh -h
python -m flask run

OR

python src/kafka/consumer.py

Single test

sh src/kafka/setup.sh  --runtest

Multi-test

sh src/kafka/setup.sh --runtests 10

Result data

ls data_tracker.pickle.csv*

Workload data

ls data/

KF accuracy tests

Edit tracker.type = KF/UKF/EKF/EKF-PCA/AKF-PCA config

sed -i s/tracker.type=.*/tracker.type=EKF-PCA/ config/testbed.properties

Run KF csv-based estimator test

python src/ekf.py --testpcacsv -f data/twitter_trace.csv -x 'Tweet Count' -y 'Tweet Count' > out_ekfpca.txt

View summary stats

tail out_ekfpca.txt

Run Adversarial Tests

python src/adversarial_tester.py -f data/analysis/data_kf_2_node_metrics.csv -x "ksurf-master CPU (m)"

or simply

python src/adversarial_tester.py

About

Ksurf+ suite of algorithms: Kalman-based filtering for cloud resource prediction.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published