Skip to content

Lee-JaeWon/2025-Arxiv-Paper-List-Gaussian-Splatting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 

Repository files navigation

2025-Arxiv-Paper-List-Gaussian-Splatting

This is crawled to find out about the 2025 Gaussian Splatting papers in arxiv. There may be errors, so please leave a Pull Request or Issue and I will actively apply it.

Updated on FEBRUARY 28, 2025

The Arxiv paper, which was published in 2024, is in the Lee-JaeWon/2024-Arxiv-Paper-List-Gaussian-Splatting repository.

We are preparing for the upcoming year 2025 with Lee-JaeWon/2025-Arxiv-Paper-List-Gaussian-Splatting. If you have any suggestions for improvement, please feel free to open an issue!

Paper List

# Title Authors Abstract Date Link
194 GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling Victor Rong,Jingxiang Chen,Sherwin Bahmani,Kiriakos N. Kutulakos,David B. Lindell
AbstractGaussian splatting has demonstrated excellent performance for view synthesis and scene reconstruction. The representation achieves photorealistic quality by optimizing the position, scale, color, and opacity of thousands to millions of 2D or 3D Gaussian primitives within a scene. However, since each Gaussian primitive encodes both appearance and geometry, these attributes are strongly coupled--thus, high-fidelity appearance modeling requires a large number of Gaussian primitives, even when the scene geometry is simple (e.g., for a textured planar surface). We propose to texture each 2D Gaussian primitive so that even a single Gaussian can be used to capture appearance details. By employing per-primitive texturing, our appearance representation is agnostic to the topology and complexity of the scene's geometry. We show that our approach, GStex, yields improved visual quality over prior work in texturing Gaussian splats. Furthermore, we demonstrate that our decoupling enables improved novel view synthesis performance compared to 2D Gaussian splatting when reducing the number of Gaussian primitives, and that GStex can be used for scene appearance editing and re-texturing.
September 2024. https://arxiv.org/abs/2409.12954
193 Does 3D Gaussian Splatting Need Accurate Volumetric Rendering? Adam Celarek,George Kopanas,George Drettakis,Michael Wimmer,Bernhard Kerbl
AbstractSince its introduction, 3D Gaussian Splatting (3DGS) has become an important reference method for learning 3D representations of a captured scene, allowing real-time novel-view synthesis with high visual quality and fast training times. Neural Radiance Fields (NeRFs), which preceded 3DGS, are based on a principled ray-marching approach for volumetric rendering. In contrast, while sharing a similar image formation model with NeRF, 3DGS uses a hybrid rendering solution that builds on the strengths of volume rendering and primitive rasterization. A crucial benefit of 3DGS is its performance, achieved through a set of approximations, in many cases with respect to volumetric rendering theory. A naturally arising question is whether replacing these approximations with more principled volumetric rendering solutions can improve the quality of 3DGS. In this paper, we present an in-depth analysis of the various approximations and assumptions used by the original 3DGS solution. We demonstrate that, while more accurate volumetric rendering can help for low numbers of primitives, the power of efficient optimization and the large number of Gaussians allows 3DGS to outperform volumetric rendering despite its approximations.
February 2025. https://arxiv.org/abs/2502.19318
192 Scaffold-SLAM: Structured 3D Gaussians for Simultaneous Localization and Photorealistic Mapping Tianci Wen,Zhiang Liu,Biao Lu,Yongchun Fang
Abstract3D Gaussian Splatting (3DGS) has recently revolutionized novel view synthesis in the Simultaneous Localization and Mapping (SLAM). However, existing SLAM methods utilizing 3DGS have failed to provide high-quality novel view rendering for monocular, stereo, and RGB-D cameras simultaneously. Notably, some methods perform well for RGB-D cameras but suffer significant degradation in rendering quality for monocular cameras. In this paper, we present Scaffold-SLAM, which delivers simultaneous localization and high-quality photorealistic mapping across monocular, stereo, and RGB-D cameras. We introduce two key innovations to achieve this state-of-the-art visual quality. First, we propose Appearance-from-Motion embedding, enabling 3D Gaussians to better model image appearance variations across different camera poses. Second, we introduce a frequency regularization pyramid to guide the distribution of Gaussians, allowing the model to effectively capture finer details in the scene. Extensive experiments on monocular, stereo, and RGB-D datasets demonstrate that Scaffold-SLAM significantly outperforms state-of-the-art methods in photorealistic mapping quality, e.g., PSNR is 16.76% higher in the TUM RGB-D datasets for monocular cameras.
January 2025. https://arxiv.org/abs/2501.05242
191 OpenFly: A Versatile Toolchain and Large-scale Benchmark for Aerial Vision-Language Navigation Yunpeng Gao,Chenhui Li,Zhongrui You,Junli Liu,Zhen Li,Pengan Chen,Qizhi Chen,Zhonghan Tang,Liansheng Wang,Penghui Yang,Yiwen Tang,Yuhang Tang,Shuai Liang,Songyi Zhu,Ziqin Xiong,Yifei Su,Xinyi Ye,Jianan Li,Yan Ding,Dong Wang,Zhigang Wang,Bin Zhao,Xuelong Li
AbstractVision-Language Navigation (VLN) aims to guide agents through an environment by leveraging both language instructions and visual cues, playing a pivotal role in embodied AI. Indoor VLN has been extensively studied, whereas outdoor aerial VLN remains underexplored. The potential reason is that outdoor aerial view encompasses vast areas, making data collection more challenging, which results in a lack of benchmarks. To address this problem, we propose OpenFly, a platform comprising a versatile toolchain and large-scale benchmark for aerial VLN. Firstly, we develop a highly automated toolchain for data collection, enabling automatic point cloud acquisition, scene semantic segmentation, flight trajectory creation, and instruction generation. Secondly, based on the toolchain, we construct a large-scale aerial VLN dataset with 100k trajectories, covering diverse heights and lengths across 18 scenes. The corresponding visual data are generated using various rendering engines and advanced techniques, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS). All data exhibit high visual quality. Particularly, 3D GS supports real-to-sim rendering, further enhancing the realism of the dataset. Thirdly, we propose OpenFly-Agent, a keyframe-aware VLN model, which takes language instructions, current observations, and historical keyframes as input, and outputs flight actions directly. Extensive analyses and experiments are conducted, showcasing the superiority of our OpenFly platform and OpenFly-Agent. The toolchain, dataset, and codes will be open-sourced.
February 2025. https://arxiv.org/abs/2502.18041
190 GaussianFlowOcc: Sparse and Weakly Supervised Occupancy Estimation using Gaussian Splatting and Temporal Flow Simon Boeder,Fabian Gigengack,Benjamin Risse
AbstractOccupancy estimation has become a prominent task in 3D computer vision, particularly within the autonomous driving community. In this paper, we present a novel approach to occupancy estimation, termed GaussianFlowOcc, which is inspired by Gaussian Splatting and replaces traditional dense voxel grids with a sparse 3D Gaussian representation. Our efficient model architecture based on a Gaussian Transformer significantly reduces computational and memory requirements by eliminating the need for expensive 3D convolutions used with inefficient voxel-based representations that predominantly represent empty 3D spaces. GaussianFlowOcc effectively captures scene dynamics by estimating temporal flow for each Gaussian during the overall network training process, offering a straightforward solution to a complex problem that is often neglected by existing methods. Moreover, GaussianFlowOcc is designed for scalability, as it employs weak supervision and does not require costly dense 3D voxel annotations based on additional data (e.g., LiDAR). Through extensive experimentation, we demonstrate that GaussianFlowOcc significantly outperforms all previous methods for weakly supervised occupancy estimation on the nuScenes dataset while featuring an inference speed that is 50 times faster than current SOTA.
February 2025. https://arxiv.org/abs/2502.17288
189 UniGS: Unified Language-Image-3D Pretraining with Gaussian Splatting Haoyuan Li,Yanpeng Zhou,Tao Tang,Jifei Song,Yihan Zeng,Michael Kampffmeyer,Hang Xu,Xiaodan Liang
AbstractRecent advancements in multi-modal 3D pre-training methods have shown promising efficacy in learning joint representations of text, images, and point clouds. However, adopting point clouds as 3D representation fails to fully capture the intricacies of the 3D world and exhibits a noticeable gap between the discrete points and the dense 2D pixels of images. To tackle this issue, we propose UniGS, integrating 3D Gaussian Splatting (3DGS) into multi-modal pre-training to enhance the 3D representation. We first rely on the 3DGS representation to model the 3D world as a collection of 3D Gaussians with color and opacity, incorporating all the information of the 3D scene while establishing a strong connection with 2D images. Then, to achieve Language-Image-3D pertaining, UniGS starts with a pre-trained vision-language model to establish a shared visual and textual space through extensive real-world image-text pairs. Subsequently, UniGS employs a 3D encoder to align the optimized 3DGS with the Language-Image representations to learn unified multi-modal representations. To facilitate the extraction of global explicit 3D features by the 3D encoder and achieve better cross-modal alignment, we additionally introduce a novel Gaussian-Aware Guidance module that guides the learning of fine-grained representations of the 3D domain. Through extensive experiments across the Objaverse, ABO, MVImgNet and SUN RGBD datasets with zero-shot classification, text-driven retrieval and open-world understanding tasks, we demonstrate the effectiveness of UniGS in learning a more general and stronger aligned multi-modal representation. Specifically, UniGS achieves leading results across different 3D tasks with remarkable improvements over previous SOTA, Uni3D, including on zero-shot classification (+9.36%), text-driven retrieval (+4.3%) and open-world understanding (+7.92%).
February 2025. https://arxiv.org/abs/2502.17860
188 Graph-Guided Scene Reconstruction from Images with 3D Gaussian Splatting Chong Cheng,Gaochao Song,Yiyang Yao,Qinzheng Zhou,Gangjian Zhang,Hao Wang
AbstractThis paper investigates an open research challenge of reconstructing high-quality, large 3D open scenes from images. It is observed existing methods have various limitations, such as requiring precise camera poses for input and dense viewpoints for supervision. To perform effective and efficient 3D scene reconstruction, we propose a novel graph-guided 3D scene reconstruction framework, GraphGS. Specifically, given a set of images captured by RGB cameras on a scene, we first design a spatial prior-based scene structure estimation method. This is then used to create a camera graph that includes information about the camera topology. Further, we propose to apply the graph-guided multi-view consistency constraint and adaptive sampling strategy to the 3D Gaussian Splatting optimization process. This greatly alleviates the issue of Gaussian points overfitting to specific sparse viewpoints and expedites the 3D reconstruction process. We demonstrate GraphGS achieves high-fidelity 3D reconstruction from images, which presents state-of-the-art performance through quantitative and qualitative evaluation across multiple datasets. Project Page: https://3dagentworld.github.io/graphgs.
February 2025. https://arxiv.org/abs/2502.17377
187 Learning Image Fractals Using Chaotic Differentiable Point Splatting Adarsh Djeacoumar,Felix Mujkanovic,Hans-Peter Seidel,Thomas Leimk\xc3\xbchler
AbstractFractal geometry, defined by self-similar patterns across scales, is crucial for understanding natural structures. This work addresses the fractal inverse problem, which involves extracting fractal codes from images to explain these patterns and synthesize them at arbitrary finer scales. We introduce a novel algorithm that optimizes Iterated Function System parameters using a custom fractal generator combined with differentiable point splatting. By integrating both stochastic and gradient-based optimization techniques, our approach effectively navigates the complex energy landscapes typical of fractal inversion, ensuring robust performance and the ability to escape local minima. We demonstrate the method's effectiveness through comparisons with various fractal inversion techniques, highlighting its ability to recover high-quality fractal codes and perform extensive zoom-ins to reveal intricate patterns from just a single image.
February 2025. https://arxiv.org/abs/2502.17230
186 Laplace-Beltrami Operator for Gaussian Splatting Hongyu Zhou,Zorah L\xc3\xa4hner
AbstractWith the rising popularity of 3D Gaussian splatting and the expanse of applications from rendering to 3D reconstruction, there comes also a need for geometry processing applications directly on this new representation. While considering the centers of Gaussians as a point cloud or meshing them is an option that allows to apply existing algorithms, this might ignore information present in the data or be unnecessarily expensive. Additionally, Gaussian splatting tends to contain a large number of outliers which do not affect the rendering quality but need to be handled correctly in order not to produce noisy results in geometry processing applications. In this work, we propose a formulation to compute the Laplace-Beltrami operator, a widely used tool in geometry processing, directly on Gaussian splatting using the Mahalanobis distance. While conceptually similar to a point cloud Laplacian, our experiments show superior accuracy on the point clouds encoded in the Gaussian splatting centers and, additionally, the operator can be used to evaluate the quality of the output during optimization.
February 2025. https://arxiv.org/abs/2502.17531
185 VR-Pipe: Streamlining Hardware Graphics Pipeline for Volume Rendering Junseo Lee,Jaisung Kim,Junyong Park,Jaewoong Sim
AbstractGraphics rendering that builds on machine learning and radiance fields is gaining significant attention due to its outstanding quality and speed in generating photorealistic images from novel viewpoints. However, prior work has primarily focused on evaluating its performance through software-based rendering on programmable shader cores, leaving its performance when exploiting fixed-function graphics units largely unexplored. In this paper, we investigate the performance implications of performing radiance field rendering on the hardware graphics pipeline. In doing so, we implement the state-of-the-art radiance field method, 3D Gaussian splatting, using graphics APIs and evaluate it across synthetic and real-world scenes on today's graphics hardware. Based on our analysis, we present VR-Pipe, which seamlessly integrates two innovations into graphics hardware to streamline the hardware pipeline for volume rendering, such as radiance field methods. First, we introduce native hardware support for early termination by repurposing existing special-purpose hardware in modern GPUs. Second, we propose multi-granular tile binning with quad merging, which opportunistically blends fragments in shader cores before passing them to fixed-function blending units. Our evaluation shows that VR-Pipe greatly improves rendering performance, achieving up to a 2.78x speedup over the conventional graphics pipeline with negligible hardware overhead.
February 2025. https://arxiv.org/abs/2502.17078
184 DynamicGSG: Dynamic 3D Gaussian Scene Graphs for Environment Adaptation Luzhou Ge,Xiangyu Zhu,Zhuo Yang,Xuesong Li
AbstractIn real-world scenarios, environment changes caused by human or agent activities make it extremely challenging for robots to perform various long-term tasks. Recent works typically struggle to effectively understand and adapt to dynamic environments due to the inability to update their environment representations in memory according to environment changes and lack of fine-grained reconstruction of the environments. To address these challenges, we propose DynamicGSG, a dynamic, high-fidelity, open-vocabulary scene graph construction system leveraging Gaussian splatting. DynamicGSG builds hierarchical scene graphs using advanced vision language models to represent the spatial and semantic relationships between objects in the environments, utilizes a joint feature loss we designed to supervise Gaussian instance grouping while optimizing the Gaussian maps, and locally updates the Gaussian scene graphs according to real environment changes for long-term environment adaptation. Experiments and ablation studies demonstrate the performance and efficacy of our proposed method in terms of semantic segmentation, language-guided object retrieval, and reconstruction quality. Furthermore, we validate the dynamic updating capabilities of our system in real laboratory environments. The source code and supplementary experimental materials will be released at:~\href{https://github.com/GeLuzhou/Dynamic-GSG}{https://github.com/GeLuzhou/Dynamic-GSG}.
February 2025. https://arxiv.org/abs/2502.15309
183 GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis Anand Kumar,Kavinder Roghit Kanthen,Josna John
AbstractWe can achieve fast and consistent early skin cancer detection with recent developments in computer vision and deep learning techniques. However, the existing skin lesion segmentation and classification prediction models run independently, thus missing potential efficiencies from their integrated execution. To unify skin lesion analysis, our paper presents the Gaussian Splatting - Transformer UNet (GS-TransUNet), a novel approach that synergistically combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis. Our unified deep learning model efficiently delivers dual-function skin lesion classification and segmentation for clinical diagnosis. Evaluated on ISIC-2017 and PH2 datasets, our network demonstrates superior performance compared to existing state-of-the-art models across multiple metrics through 5-fold cross-validation. Our findings illustrate significant advancements in the precision of segmentation and classification. This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies, promising enhancements in automated diagnostic systems.
February 2025. https://arxiv.org/abs/2502.16748
182 Dr. Splat: Directly Referring 3D Gaussian Splatting via Direct Language Embedding Registration Kim Jun-Seong,GeonU Kim,Kim Yu-Ji,Yu-Chiang Frank Wang,Jaesung Choe,Tae-Hyun Oh
AbstractWe introduce Dr. Splat, a novel approach for open-vocabulary 3D scene understanding leveraging 3D Gaussian Splatting. Unlike existing language-embedded 3DGS methods, which rely on a rendering process, our method directly associates language-aligned CLIP embeddings with 3D Gaussians for holistic 3D scene understanding. The key of our method is a language feature registration technique where CLIP embeddings are assigned to the dominant Gaussians intersected by each pixel-ray. Moreover, we integrate Product Quantization (PQ) trained on general large-scale image data to compactly represent embeddings without per-scene optimization. Experiments demonstrate that our approach significantly outperforms existing approaches in 3D perception benchmarks, such as open-vocabulary 3D semantic segmentation, 3D object localization, and 3D object selection tasks. For video results, please visit : https://drsplat.github.io/
February 2025. https://arxiv.org/abs/2502.16652
181 Dragen3D: Multiview Geometry Consistent 3D Gaussian Generation with Drag-Based Control Jinbo Yan,Alan Zhao,Yixin Hu
AbstractSingle-image 3D generation has emerged as a prominent research topic, playing a vital role in virtual reality, 3D modeling, and digital content creation. However, existing methods face challenges such as a lack of multi-view geometric consistency and limited controllability during the generation process, which significantly restrict their usability. % To tackle these challenges, we introduce Dragen3D, a novel approach that achieves geometrically consistent and controllable 3D generation leveraging 3D Gaussian Splatting (3DGS). We introduce the Anchor-Gaussian Variational Autoencoder (Anchor-GS VAE), which encodes a point cloud and a single image into anchor latents and decode these latents into 3DGS, enabling efficient latent-space generation. To enable multi-view geometry consistent and controllable generation, we propose a Seed-Point-Driven strategy: first generate sparse seed points as a coarse geometry representation, then map them to anchor latents via the Seed-Anchor Mapping Module. Geometric consistency is ensured by the easily learned sparse seed points, and users can intuitively drag the seed points to deform the final 3DGS geometry, with changes propagated through the anchor latents. To the best of our knowledge, we are the first to achieve geometrically controllable 3D Gaussian generation and editing without relying on 2D diffusion priors, delivering comparable 3D generation quality to state-of-the-art methods.
February 2025. https://arxiv.org/abs/2502.16475
180 GSORB-SLAM: Gaussian Splatting SLAM benefits from ORB features and Transmittance information Wancai Zheng,Xinyi Yu,Jintao Rong,Linlin Ou,Yan Wei,Libo Zhou
AbstractThe emergence of 3D Gaussian Splatting (3DGS) has recently ignited a renewed wave of research in dense visual SLAM. However, existing approaches encounter challenges, including sensitivity to artifacts and noise, suboptimal selection of training viewpoints, and the absence of global optimization. In this paper, we propose GSORB-SLAM, a dense SLAM framework that integrates 3DGS with ORB features through a tightly coupled optimization pipeline. To mitigate the effects of noise and artifacts, we propose a novel geometric representation and optimization method for tracking, which significantly enhances localization accuracy and robustness. For high-fidelity mapping, we develop an adaptive Gaussian expansion and regularization method that facilitates compact yet expressive scene modeling while suppressing redundant primitives. Furthermore, we design a hybrid graph-based viewpoint selection mechanism that effectively reduces overfitting and accelerates convergence. Extensive evaluations across various datasets demonstrate that our system achieves state-of-the-art performance in both tracking precision-improving RMSE by 16.2% compared to ORB-SLAM2 baselines-and reconstruction quality-improving PSNR by 3.93 dB compared to 3DGS-SLAM baselines. The project: https://aczheng-cai.github.io/gsorb-slam.github.io/
October 2024. https://arxiv.org/abs/2410.11356
179 RL-GSBridge: 3D Gaussian Splatting Based Real2Sim2Real Method for Robotic Manipulation Learning Yuxuan Wu,Lei Pan,Wenhua Wu,Guangming Wang,Yanzi Miao,Fan Xu,Hesheng Wang
AbstractSim-to-Real refers to the process of transferring policies learned in simulation to the real world, which is crucial for achieving practical robotics applications. However, recent Sim2real methods either rely on a large amount of augmented data or large learning models, which is inefficient for specific tasks. In recent years, with the emergence of radiance field reconstruction methods, especially 3D Gaussian splatting, it has become possible to construct realistic real-world scenes. To this end, we propose RL-GSBridge, a novel real-to-sim-to-real framework which incorporates 3D Gaussian Splatting into the conventional RL simulation pipeline, enabling zero-shot sim-to-real transfer for vision-based deep reinforcement learning. We introduce a mesh-based 3D GS method with soft binding constraints, enhancing the rendering quality of mesh models. Then utilizing a GS editing approach to synchronize the rendering with the physics simulator, RL-GSBridge could reflect the visual interactions of the physical robot accurately. Through a series of sim-to-real experiments, including grasping and pick-and-place tasks, we demonstrate that RL-GSBridge maintains a satisfactory success rate in real-world task completion during sim-to-real transfer. Furthermore, a series of rendering metrics and visualization results indicate that our proposed mesh-based 3D GS reduces artifacts in unstructured objects, demonstrating more realistic rendering performance.
September 2024. https://arxiv.org/abs/2409.20291
178 2D Gaussian Splatting for Geometrically Accurate Radiance Fields Binbin Huang,Zehao Yu,Anpei Chen,Andreas Geiger,Shenghua Gao
Abstract3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking. However, 3DGS fails to accurately represent surfaces due to the multi-view inconsistent nature of 3D Gaussians. We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images. Our key idea is to collapse the 3D volume into a set of 2D oriented planar Gaussian disks. Unlike 3D Gaussians, 2D Gaussians provide view-consistent geometry while modeling surfaces intrinsically. To accurately recover thin surfaces and achieve stable optimization, we introduce a perspective-correct 2D splatting process utilizing ray-splat intersection and rasterization. Additionally, we incorporate depth distortion and normal consistency terms to further enhance the quality of the reconstructions. We demonstrate that our differentiable renderer allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
March 2024. https://arxiv.org/abs/2403.17888
177 A Survey on 3D Gaussian Splatting Guikun Chen,Wenguan Wang
Abstract3D Gaussian splatting (GS) has emerged as a transformative technique in explicit radiance field and computer graphics. This innovative approach, characterized by the use of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
January 2024. https://arxiv.org/abs/2401.03890
176 Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering Cheng Sun,Jaesung Choe,Charles Loop,Wei-Chiu Ma,Yu-Chiang Frank Wang
AbstractWe propose an efficient radiance field rendering algorithm that incorporates a rasterization process on adaptive sparse voxels without neural networks or 3D Gaussians. There are two key contributions coupled with the proposed system. The first is to adaptively and explicitly allocate sparse voxels to different levels of detail within scenes, faithfully reproducing scene details with $65536^3$ grid resolution while achieving high rendering frame rates. Second, we customize a rasterizer for efficient adaptive sparse voxels rendering. We render voxels in the correct depth order by using ray direction-dependent Morton ordering, which avoids the well-known popping artifact found in Gaussian splatting. Our method improves the previous neural-free voxel model by over 4db PSNR and more than 10x FPS speedup, achieving state-of-the-art comparable novel-view synthesis results. Additionally, our voxel representation is seamlessly compatible with grid-based 3D processing techniques such as Volume Fusion, Voxel Pooling, and Marching Cubes, enabling a wide range of future extensions and applications.
December 2024. https://arxiv.org/abs/2412.04459
175 RGB-Only Gaussian Splatting SLAM for Unbounded Outdoor Scenes Sicheng Yu,Chong Cheng,Yifan Zhou,Xiaojun Yang,Hao Wang
Abstract3D Gaussian Splatting (3DGS) has become a popular solution in SLAM, as it can produce high-fidelity novel views. However, previous GS-based methods primarily target indoor scenes and rely on RGB-D sensors or pre-trained depth estimation models, hence underperforming in outdoor scenarios. To address this issue, we propose a RGB-only gaussian splatting SLAM method for unbounded outdoor scenes--OpenGS-SLAM. Technically, we first employ a pointmap regression network to generate consistent pointmaps between frames for pose estimation. Compared to commonly used depth maps, pointmaps include spatial relationships and scene geometry across multiple views, enabling robust camera pose estimation. Then, we propose integrating the estimated camera poses with 3DGS rendering as an end-to-end differentiable pipeline. Our method achieves simultaneous optimization of camera poses and 3DGS scene parameters, significantly enhancing system tracking accuracy. Specifically, we also design an adaptive scale mapper for the pointmap regression network, which provides more accurate pointmap mapping to the 3DGS map representation. Our experiments on the Waymo dataset demonstrate that OpenGS-SLAM reduces tracking error to 9.8\% of previous 3DGS methods, and achieves state-of-the-art results in novel view synthesis. Project Page: https://3dagentworld.github.io/opengs-slam/
February 2025. https://arxiv.org/abs/2502.15633
174 LayerPano3D: Layered 3D Panorama for Hyper-Immersive Scene Generation Shuai Yang,Jing Tan,Mengchen Zhang,Tong Wu,Yixuan Li,Gordon Wetzstein,Ziwei Liu,Dahua Lin
Abstract3D immersive scene generation is a challenging yet critical task in computer vision and graphics. A desired virtual 3D scene should 1) exhibit omnidirectional view consistency, and 2) allow for free exploration in complex scene hierarchies. Existing methods either rely on successive scene expansion via inpainting or employ panorama representation to represent large FOV scene environments. However, the generated scene suffers from semantic drift during expansion and is unable to handle occlusion among scene hierarchies. To tackle these challenges, we introduce Layerpano3D, a novel framework for full-view, explorable panoramic 3D scene generation from a single text prompt. Our key insight is to decompose a reference 2D panorama into multiple layers at different depth levels, where each layer reveals the unseen space from the reference views via diffusion prior. Layerpano3D comprises multiple dedicated designs: 1) We introduce a new panorama dataset Upright360, comprising 9k high-quality and upright panorama images, and finetune the advanced Flux model on Upright360 for high-quality, upright and consistent panorama generation. 2) We pioneer the Layered 3D Panorama as underlying representation to manage complex scene hierarchies and lift it into 3D Gaussians to splat detailed 360-degree omnidirectional scenes with unconstrained viewing paths. Extensive experiments demonstrate that our framework generates state-of-the-art 3D panoramic scene in both full view consistency and immersive exploratory experience. We believe that Layerpano3D holds promise for advancing 3D panoramic scene creation with numerous applications.
August 2024. https://arxiv.org/abs/2408.13252
173 SplatOverflow: Asynchronous Hardware Troubleshooting Amritansh Kwatra,Tobias Weinberg,Ilan Mandel,Ritik Batra,Peter He,Francois Guimbretiere,Thijs Roumen
AbstractAs tools for designing and manufacturing hardware become more accessible, smaller producers can develop and distribute novel hardware. However, processes for supporting end-user hardware troubleshooting or routine maintenance aren't well defined. As a result, providing technical support for hardware remains ad-hoc and challenging to scale. Inspired by patterns that helped scale software troubleshooting, we propose a workflow for asynchronous hardware troubleshooting: SplatOverflow. SplatOverflow creates a novel boundary object, the SplatOverflow scene, that users reference to communicate about hardware. A scene comprises a 3D Gaussian Splat of the user's hardware registered onto the hardware's CAD model. The splat captures the current state of the hardware, and the registered CAD model acts as a referential anchor for troubleshooting instructions. With SplatOverflow, remote maintainers can directly address issues and author instructions in the user's workspace. Workflows containing multiple instructions can easily be shared between users and recontextualized in new environments. In this paper, we describe the design of SplatOverflow, the workflows it enables, and its utility to different kinds of users. We also validate that non-experts can use SplatOverflow to troubleshoot common problems with a 3D printer in a usability study. Project Page: https://amritkwatra.com/research/splatoverflow.
November 2024. https://arxiv.org/abs/2411.02332
172 CDGS: Confidence-Aware Depth Regularization for 3D Gaussian Splatting Qilin Zhang,Olaf Wysocki,Steffen Urban,Boris Jutzi
Abstract3D Gaussian Splatting (3DGS) has shown significant advantages in novel view synthesis (NVS), particularly in achieving high rendering speeds and high-quality results. However, its geometric accuracy in 3D reconstruction remains limited due to the lack of explicit geometric constraints during optimization. This paper introduces CDGS, a confidence-aware depth regularization approach developed to enhance 3DGS. We leverage multi-cue confidence maps of monocular depth estimation and sparse Structure-from-Motion depth to adaptively adjust depth supervision during the optimization process. Our method demonstrates improved geometric detail preservation in early training stages and achieves competitive performance in both NVS quality and geometric accuracy. Experiments on the publicly available Tanks and Temples benchmark dataset show that our method achieves more stable convergence behavior and more accurate geometric reconstruction results, with improvements of up to 2.31 dB in PSNR for NVS and consistently lower geometric errors in M3C2 distance metrics. Notably, our method reaches comparable F-scores to the original 3DGS with only 50% of the training iterations. We expect this work will facilitate the development of efficient and accurate 3D reconstruction systems for real-world applications such as digital twin creation, heritage preservation, or forestry applications.
February 2025. https://arxiv.org/abs/2502.14684
171 GS-Cache: A GS-Cache Inference Framework for Large-scale Gaussian Splatting Models Miao Tao,Yuanzhen Zhou,Haoran Xu,Zeyu He,Zhenyu Yang,Yuchang Zhang,Zhongling Su,Linning Xu,Zhenxiang Ma,Rong Fu,Hengjie Li,Xingcheng Zhang,Jidong Zhai
AbstractRendering large-scale 3D Gaussian Splatting (3DGS) model faces significant challenges in achieving real-time, high-fidelity performance on consumer-grade devices. Fully realizing the potential of 3DGS in applications such as virtual reality (VR) requires addressing critical system-level challenges to support real-time, immersive experiences. We propose GS-Cache, an end-to-end framework that seamlessly integrates 3DGS's advanced representation with a highly optimized rendering system. GS-Cache introduces a cache-centric pipeline to eliminate redundant computations, an efficiency-aware scheduler for elastic multi-GPU rendering, and optimized CUDA kernels to overcome computational bottlenecks. This synergy between 3DGS and system design enables GS-Cache to achieve up to 5.35x performance improvement, 35% latency reduction, and 42% lower GPU memory usage, supporting 2K binocular rendering at over 120 FPS with high visual quality. By bridging the gap between 3DGS's representation power and the demands of VR systems, GS-Cache establishes a scalable and efficient framework for real-time neural rendering in immersive environments.
February 2025. https://arxiv.org/abs/2502.14938
170 CaRtGS: Computational Alignment for Real-Time Gaussian Splatting SLAM Dapeng Feng,Zhiqiang Chen,Yizhen Yin,Shipeng Zhong,Yuhua Qi,Hongbo Chen
AbstractSimultaneous Localization and Mapping (SLAM) is pivotal in robotics, with photorealistic scene reconstruction emerging as a key challenge. To address this, we introduce Computational Alignment for Real-Time Gaussian Splatting SLAM (CaRtGS), a novel method enhancing the efficiency and quality of photorealistic scene reconstruction in real-time environments. Leveraging 3D Gaussian Splatting (3DGS), CaRtGS achieves superior rendering quality and processing speed, which is crucial for scene photorealistic reconstruction. Our approach tackles computational misalignment in Gaussian Splatting SLAM (GS-SLAM) through an adaptive strategy that enhances optimization iterations, addresses long-tail optimization, and refines densification. Experiments on Replica, TUM-RGBD, and VECtor datasets demonstrate CaRtGS's effectiveness in achieving high-fidelity rendering with fewer Gaussian primitives. This work propels SLAM towards real-time, photorealistic dense rendering, significantly advancing photorealistic scene representation. For the benefit of the research community, we release the code and accompanying videos on our project website: https://dapengfeng.github.io/cartgs.
October 2024. https://arxiv.org/abs/2410.00486
169 Hier-SLAM++: Neuro-Symbolic Semantic SLAM with a Hierarchically Categorical Gaussian Splatting Boying Li,Vuong Chi Hao,Peter J. Stuckey,Ian Reid,Hamid Rezatofighi
AbstractWe propose Hier-SLAM++, a comprehensive Neuro-Symbolic semantic 3D Gaussian Splatting SLAM method with both RGB-D and monocular input featuring an advanced hierarchical categorical representation, which enables accurate pose estimation as well as global 3D semantic mapping. The parameter usage in semantic SLAM systems increases significantly with the growing complexity of the environment, making scene understanding particularly challenging and costly. To address this problem, we introduce a novel and general hierarchical representation that encodes both semantic and geometric information in a compact form into 3D Gaussian Splatting, leveraging the capabilities of large language models (LLMs) as well as the 3D generative model. By utilizing the proposed hierarchical tree structure, semantic information is symbolically represented and learned in an end-to-end manner. We further introduce a novel semantic loss designed to optimize hierarchical semantic information through both inter-level and cross-level optimization. Additionally, we propose an improved SLAM system to support both RGB-D and monocular inputs using a feed-forward model. To the best of our knowledge, this is the first semantic monocular Gaussian Splatting SLAM system, significantly reducing sensor requirements for 3D semantic understanding and broadening the applicability of semantic Gaussian SLAM system. We conduct experiments on both synthetic and real-world datasets, demonstrating superior or on-par performance with state-of-the-art NeRF-based and Gaussian-based SLAM systems, while significantly reducing storage and training time requirements.
February 2025. https://arxiv.org/abs/2502.14931
168 Hier-SLAM: Scaling-up Semantics in SLAM with a Hierarchically Categorical Gaussian Splatting Boying Li,Zhixi Cai,Yuan-Fang Li,Ian Reid,Hamid Rezatofighi
AbstractWe propose Hier-SLAM, a semantic 3D Gaussian Splatting SLAM method featuring a novel hierarchical categorical representation, which enables accurate global 3D semantic mapping, scaling-up capability, and explicit semantic label prediction in the 3D world. The parameter usage in semantic SLAM systems increases significantly with the growing complexity of the environment, making it particularly challenging and costly for scene understanding. To address this problem, we introduce a novel hierarchical representation that encodes semantic information in a compact form into 3D Gaussian Splatting, leveraging the capabilities of large language models (LLMs). We further introduce a novel semantic loss designed to optimize hierarchical semantic information through both inter-level and cross-level optimization. Furthermore, we enhance the whole SLAM system, resulting in improved tracking and mapping performance. Our Hier-SLAM outperforms existing dense SLAM methods in both mapping and tracking accuracy, while achieving a 2x operation speed-up. Additionally, it exhibits competitive performance in rendering semantic segmentation in small synthetic scenes, with significantly reduced storage and training time requirements. Rendering FPS impressively reaches 2,000 with semantic information and 3,000 without it. Most notably, it showcases the capability of handling the complex real-world scene with more than 500 semantic classes, highlighting its valuable scaling-up capability.
September 2024. https://arxiv.org/abs/2409.12518
167 OG-Gaussian: Occupancy Based Street Gaussians for Autonomous Driving Yedong Shen,Xinran Zhang,Yifan Duan,Shiqi Zhang,Heng Li,Yilong Wu,Jianmin Ji,Yanyong Zhang
AbstractAccurate and realistic 3D scene reconstruction enables the lifelike creation of autonomous driving simulation environments. With advancements in 3D Gaussian Splatting (3DGS), previous studies have applied it to reconstruct complex dynamic driving scenes. These methods typically require expensive LiDAR sensors and pre-annotated datasets of dynamic objects. To address these challenges, we propose OG-Gaussian, a novel approach that replaces LiDAR point clouds with Occupancy Grids (OGs) generated from surround-view camera images using Occupancy Prediction Network (ONet). Our method leverages the semantic information in OGs to separate dynamic vehicles from static street background, converting these grids into two distinct sets of initial point clouds for reconstructing both static and dynamic objects. Additionally, we estimate the trajectories and poses of dynamic objects through a learning-based approach, eliminating the need for complex manual annotations. Experiments on Waymo Open dataset demonstrate that OG-Gaussian is on par with the current state-of-the-art in terms of reconstruction quality and rendering speed, achieving an average PSNR of 35.13 and a rendering speed of 143 FPS, while significantly reducing computational costs and economic overhead.
February 2025. https://arxiv.org/abs/2502.14235
166 3D-Adapter: Geometry-Consistent Multi-View Diffusion for High-Quality 3D Generation Hansheng Chen,Bokui Shen,Yulin Liu,Ruoxi Shi,Linqi Zhou,Connor Z. Lin,Jiayuan Gu,Hao Su,Gordon Wetzstein,Leonidas Guibas
AbstractMulti-view image diffusion models have significantly advanced open-domain 3D object generation. However, most existing models rely on 2D network architectures that lack inherent 3D biases, resulting in compromised geometric consistency. To address this challenge, we introduce 3D-Adapter, a plug-in module designed to infuse 3D geometry awareness into pretrained image diffusion models. Central to our approach is the idea of 3D feedback augmentation: for each denoising step in the sampling loop, 3D-Adapter decodes intermediate multi-view features into a coherent 3D representation, then re-encodes the rendered RGBD views to augment the pretrained base model through feature addition. We study two variants of 3D-Adapter: a fast feed-forward version based on Gaussian splatting and a versatile training-free version utilizing neural fields and meshes. Our extensive experiments demonstrate that 3D-Adapter not only greatly enhances the geometry quality of text-to-multi-view models such as Instant3D and Zero123++, but also enables high-quality 3D generation using the plain text-to-image Stable Diffusion. Furthermore, we showcase the broad application potential of 3D-Adapter by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and text-to-avatar tasks.
October 2024. https://arxiv.org/abs/2410.18974
165 OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering Jingrui Ye,Zongkai Zhang,Yujiao Jiang,Qingmin Liao,Wenming Yang,Zongqing Lu
AbstractRendering dynamic 3D human from monocular videos is crucial for various applications such as virtual reality and digital entertainment. Most methods assume the people is in an unobstructed scene, while various objects may cause the occlusion of body parts in real-life scenarios. Previous method utilizing NeRF for surface rendering to recover the occluded areas, but it requiring more than one day to train and several seconds to render, failing to meet the requirements of real-time interactive applications. To address these issues, we propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input. OccGaussian initializes 3D Gaussian distributions in the canonical space, and we perform occlusion feature query at occluded regions, the aggregated pixel-align feature is extracted to compensate for the missing information. Then we use Gaussian Feature MLP to further process the feature along with the occlusion-aware loss functions to better perceive the occluded area. Extensive experiments both in simulated and real-world occlusions, demonstrate that our method achieves comparable or even superior performance compared to the state-of-the-art method. And we improving training and inference speeds by 250x and 800x, respectively. Our code will be available for research purposes.
April 2024. https://arxiv.org/abs/2404.08449
164 GlossGau: Efficient Inverse Rendering for Glossy Surface with Anisotropic Spherical Gaussian Bang Du,Runfa Blark Li,Chen Du,Truong Nguyen
AbstractThe reconstruction of 3D objects from calibrated photographs represents a fundamental yet intricate challenge in the domains of computer graphics and vision. Although neural reconstruction approaches based on Neural Radiance Fields (NeRF) have shown remarkable capabilities, their processing costs remain substantial. Recently, the advent of 3D Gaussian Splatting (3D-GS) largely improves the training efficiency and facilitates to generate realistic rendering in real-time. However, due to the limited ability of Spherical Harmonics (SH) to represent high-frequency information, 3D-GS falls short in reconstructing glossy objects. Researchers have turned to enhance the specular expressiveness of 3D-GS through inverse rendering. Yet these methods often struggle to maintain the training and rendering efficiency, undermining the benefits of Gaussian Splatting techniques. In this paper, we introduce GlossGau, an efficient inverse rendering framework that reconstructs scenes with glossy surfaces while maintaining training and rendering speeds comparable to vanilla 3D-GS. Specifically, we explicitly model the surface normals, Bidirectional Reflectance Distribution Function (BRDF) parameters, as well as incident lights and use Anisotropic Spherical Gaussian (ASG) to approximate the per-Gaussian Normal Distribution Function under the microfacet model. We utilize 2D Gaussian Splatting (2D-GS) as foundational primitives and apply regularization to significantly alleviate the normal estimation challenge encountered in related works. Experiments demonstrate that GlossGau achieves competitive or superior reconstruction on datasets with glossy surfaces. Compared with previous GS-based works that address the specular surface, our optimization time is considerably less.
February 2025. https://arxiv.org/abs/2502.14129
163 3D Gaussian Splatting aided Localization for Large and Complex Indoor-Environments Vincent Ress,Jonas Meyer,Wei Zhang,David Skuddis,Uwe Soergel,Norbert Haala
AbstractThe field of visual localization has been researched for several decades and has meanwhile found many practical applications. Despite the strong progress in this field, there are still challenging situations in which established methods fail. We present an approach to significantly improve the accuracy and reliability of established visual localization methods by adding rendered images. In detail, we first use a modern visual SLAM approach that provides a 3D Gaussian Splatting (3DGS) based map to create reference data. We demonstrate that enriching reference data with images rendered from 3DGS at randomly sampled poses significantly improves the performance of both geometry-based visual localization and Scene Coordinate Regression (SCR) methods. Through comprehensive evaluation in a large industrial environment, we analyze the performance impact of incorporating these additional rendered views.
February 2025. https://arxiv.org/abs/2502.13803
162 Inter3D: A Benchmark and Strong Baseline for Human-Interactive 3D Object Reconstruction Gan Chen,Ying He,Mulin Yu,F. Richard Yu,Gang Xu,Fei Ma,Ming Li,Guang Zhou
AbstractRecent advancements in implicit 3D reconstruction methods, e.g., neural rendering fields and Gaussian splatting, have primarily focused on novel view synthesis of static or dynamic objects with continuous motion states. However, these approaches struggle to efficiently model a human-interactive object with n movable parts, requiring 2^n separate models to represent all discrete states. To overcome this limitation, we propose Inter3D, a new benchmark and approach for novel state synthesis of human-interactive objects. We introduce a self-collected dataset featuring commonly encountered interactive objects and a new evaluation pipeline, where only individual part states are observed during training, while part combination states remain unseen. We also propose a strong baseline approach that leverages Space Discrepancy Tensors to efficiently modelling all states of an object. To alleviate the impractical constraints on camera trajectories across training states, we propose a Mutual State Regularization mechanism to enhance the spatial density consistency of movable parts. In addition, we explore two occupancy grid sampling strategies to facilitate training efficiency. We conduct extensive experiments on the proposed benchmark, showcasing the challenges of the task and the superiority of our approach.
February 2025. https://arxiv.org/abs/2502.14004
161 Hybrid Explicit Representation for Ultra-Realistic Head Avatars Hongrui Cai,Yuting Xiao,Xuan Wang,Jiafei Li,Yudong Guo,Yanbo Fan,Shenghua Gao,Juyong Zhang
AbstractWe introduce a novel approach to creating ultra-realistic head avatars and rendering them in real-time (>30fps at $2048 \times 1334$ resolution). First, we propose a hybrid explicit representation that combines the advantages of two primitive-based efficient rendering techniques. UV-mapped 3D mesh is utilized to capture sharp and rich textures on smooth surfaces, while 3D Gaussian Splatting is employed to represent complex geometric structures. In the pipeline of modeling an avatar, after tracking parametric models based on captured multi-view RGB videos, our goal is to simultaneously optimize the texture and opacity map of mesh, as well as a set of 3D Gaussian splats localized and rigged onto the mesh facets. Specifically, we perform $\xce\xb1$-blending on the color and opacity values based on the merged and re-ordered z-buffer from the rasterization results of mesh and 3DGS. This process involves the mesh and 3DGS adaptively fitting the captured visual information to outline a high-fidelity digital avatar. To avoid artifacts caused by Gaussian splats crossing the mesh facets, we design a stable hybrid depth sorting strategy. Experiments illustrate that our modeled results exceed those of state-of-the-art approaches.
March 2024. https://arxiv.org/abs/2403.11453
160 WRF-GS: Wireless Radiation Field Reconstruction with 3D Gaussian Splatting Chaozheng Wen,Jingwen Tong,Yingdong Hu,Zehong Lin,Jun Zhang
AbstractWireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a longstanding challenge. This issue has been escalated due to the denser network deployment, larger antenna arrays, and wider bandwidth in 5G and beyond networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting. WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. Notably, with a small number of measurements, WRF-GS can synthesize new spatial spectra within milliseconds for a given scene, thereby enabling latency-sensitive applications. Experimental results demonstrate that WRF-GS outperforms existing methods for spatial spectrum synthesis, such as ray tracing and other deep-learning approaches. Moreover, WRF-GS achieves superior performance in the channel state information prediction task, surpassing existing methods by a significant margin of more than 2.43 dB.
December 2024. https://arxiv.org/abs/2412.04832
159 GS-QA: Comprehensive Quality Assessment Benchmark for Gaussian Splatting View Synthesis Pedro Martin,Ant\xc3\xb3nio Rodrigues,Jo\xc3\xa3o Ascenso,Maria Paula Queluz
AbstractGaussian Splatting (GS) offers a promising alternative to Neural Radiance Fields (NeRF) for real-time 3D scene rendering. Using a set of 3D Gaussians to represent complex geometry and appearance, GS achieves faster rendering times and reduced memory consumption compared to the neural network approach used in NeRF. However, quality assessment of GS-generated static content is not yet explored in-depth. This paper describes a subjective quality assessment study that aims to evaluate synthesized videos obtained with several static GS state-of-the-art methods. The methods were applied to diverse visual scenes, covering both 360-degree and forward-facing (FF) camera trajectories. Moreover, the performance of 18 objective quality metrics was analyzed using the scores resulting from the subjective study, providing insights into their strengths, limitations, and alignment with human perception. All videos and scores are made available providing a comprehensive database that can be used as benchmark on GS view synthesis and objective quality metrics.
February 2025. https://arxiv.org/abs/2502.13196
158 GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM Mingrui Li,Weijian Chen,Na Cheng,Jingyuan Xu,Dong Li,Hongyu Wang
AbstractThe 3D Gaussian Splatting (3DGS)-based SLAM system has garnered widespread attention due to its excellent performance in real-time high-fidelity rendering. However, in real-world environments with dynamic objects, existing 3DGS-based SLAM systems often face mapping errors and tracking drift issues. To address these problems, we propose GARAD-SLAM, a real-time 3DGS-based SLAM system tailored for dynamic scenes. In terms of tracking, unlike traditional methods, we directly perform dynamic segmentation on Gaussians and map them back to the front-end to obtain dynamic point labels through a Gaussian pyramid network, achieving precise dynamic removal and robust tracking. For mapping, we impose rendering penalties on dynamically labeled Gaussians, which are updated through the network, to avoid irreversible erroneous removal caused by simple pruning. Our results on real-world datasets demonstrate that our method is competitive in tracking compared to baseline methods, generating fewer artifacts and higher-quality reconstructions in rendering.
February 2025. https://arxiv.org/abs/2502.03228
157 High-Fidelity Novel View Synthesis via Splatting-Guided Diffusion Xiang Zhang,Yang Zhang,Lukas Mehl,Markus Gross,Christopher Schroers
AbstractDespite recent advances in Novel View Synthesis (NVS), generating high-fidelity views from single or sparse observations remains a significant challenge. Existing splatting-based approaches often produce distorted geometry due to splatting errors. While diffusion-based methods leverage rich 3D priors to achieve improved geometry, they often suffer from texture hallucination. In this paper, we introduce SplatDiff, a pixel-splatting-guided video diffusion model designed to synthesize high-fidelity novel views from a single image. Specifically, we propose an aligned synthesis strategy for precise control of target viewpoints and geometry-consistent view synthesis. To mitigate texture hallucination, we design a texture bridge module that enables high-fidelity texture generation through adaptive feature fusion. In this manner, SplatDiff leverages the strengths of splatting and diffusion to generate novel views with consistent geometry and high-fidelity details. Extensive experiments verify the state-of-the-art performance of SplatDiff in single-view NVS. Additionally, without extra training, SplatDiff shows remarkable zero-shot performance across diverse tasks, including sparse-view NVS and stereo video conversion.
February 2025. https://arxiv.org/abs/2502.12752
156 SqueezeMe: Mobile-Ready Distillation of Gaussian Full-Body Avatars Forrest Iandola,Stanislav Pidhorskyi,Igor Santesteban,Divam Gupta,Anuj Pahuja,Nemanja Bartolovic,Frank Yu,Emanuel Garbin,Tomas Simon,Shunsuke Saito
AbstractGaussian-based human avatars have achieved an unprecedented level of visual fidelity. However, existing approaches based on high-capacity neural networks typically require a desktop GPU to achieve real-time performance for a single avatar, and it remains non-trivial to animate and render such avatars on mobile devices including a standalone VR headset due to substantially limited memory and computational bandwidth. In this paper, we present SqueezeMe, a simple and highly effective framework to convert high-fidelity 3D Gaussian full-body avatars into a lightweight representation that supports both animation and rendering with mobile-grade compute. Our key observation is that the decoding of pose-dependent Gaussian attributes from a neural network creates non-negligible memory and computational overhead. Inspired by blendshapes and linear pose correctives widely used in Computer Graphics, we address this by distilling the pose correctives learned with neural networks into linear layers. Moreover, we further reduce the parameters by sharing the correctives among nearby Gaussians. Combining them with a custom splatting pipeline based on Vulkan, we achieve, for the first time, simultaneous animation and rendering of 3 Gaussian avatars in real-time (72 FPS) on a Meta Quest 3 VR headset.
December 2024. https://arxiv.org/abs/2412.15171
155 High-Dynamic Radar Sequence Prediction for Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation Ziye Wang,Yiran Qin,Lin Zeng,Ruimao Zhang
AbstractWeather nowcasting is an essential task that involves predicting future radar echo sequences based on current observations, offering significant benefits for disaster management, transportation, and urban planning. Current prediction methods are limited by training and storage efficiency, mainly focusing on 2D spatial predictions at specific altitudes. Meanwhile, 3D volumetric predictions at each timestamp remain largely unexplored. To address such a challenge, we introduce a comprehensive framework for 3D radar sequence prediction in weather nowcasting, using the newly proposed SpatioTemporal Coherent Gaussian Splatting (STC-GS) for dynamic radar representation and GauMamba for efficient and accurate forecasting. Specifically, rather than relying on a 4D Gaussian for dynamic scene reconstruction, STC-GS optimizes 3D scenes at each frame by employing a group of Gaussians while effectively capturing their movements across consecutive frames. It ensures consistent tracking of each Gaussian over time, making it particularly effective for prediction tasks. With the temporally correlated Gaussian groups established, we utilize them to train GauMamba, which integrates a memory mechanism into the Mamba framework. This allows the model to learn the temporal evolution of Gaussian groups while efficiently handling a large volume of Gaussian tokens. As a result, it achieves both efficiency and accuracy in forecasting a wide range of dynamic meteorological radar signals. The experimental results demonstrate that our STC-GS can efficiently represent 3D radar sequences with over $16\times$ higher spatial resolution compared with the existing 3D representation methods, while GauMamba outperforms state-of-the-art methods in forecasting a broad spectrum of high-dynamic weather conditions.
February 2025. https://arxiv.org/abs/2502.14895
154 PUGS: Zero-shot Physical Understanding with Gaussian Splatting Yinghao Shuai,Ran Yu,Yuantao Chen,Zijian Jiang,Xiaowei Song,Nan Wang,Jv Zheng,Jianzhu Ma,Meng Yang,Zhicheng Wang,Wenbo Ding,Hao Zhao
AbstractCurrent robotic systems can understand the categories and poses of objects well. But understanding physical properties like mass, friction, and hardness, in the wild, remains challenging. We propose a new method that reconstructs 3D objects using the Gaussian splatting representation and predicts various physical properties in a zero-shot manner. We propose two techniques during the reconstruction phase: a geometry-aware regularization loss function to improve the shape quality and a region-aware feature contrastive loss function to promote region affinity. Two other new techniques are designed during inference: a feature-based property propagation module and a volume integration module tailored for the Gaussian representation. Our framework is named as zero-shot physical understanding with Gaussian splatting, or PUGS. PUGS achieves new state-of-the-art results on the standard benchmark of ABO-500 mass prediction. We provide extensive quantitative ablations and qualitative visualization to demonstrate the mechanism of our designs. We show the proposed methodology can help address challenging real-world grasping tasks. Our codes, data, and models are available at https://github.com/EverNorif/PUGS
February 2025. https://arxiv.org/abs/2502.12231
153 3D Gaussian Inpainting with Depth-Guided Cross-View Consistency Sheng-Yu Huang,Zi-Ting Chou,Yu-Chiang Frank Wang
AbstractWhen performing 3D inpainting using novel-view rendering methods like Neural Radiance Field (NeRF) or 3D Gaussian Splatting (3DGS), how to achieve texture and geometry consistency across camera views has been a challenge. In this paper, we propose a framework of 3D Gaussian Inpainting with Depth-Guided Cross-View Consistency (3DGIC) for cross-view consistent 3D inpainting. Guided by the rendered depth information from each training view, our 3DGIC exploits background pixels visible across different views for updating the inpainting mask, allowing us to refine the 3DGS for inpainting purposes.Through extensive experiments on benchmark datasets, we confirm that our 3DGIC outperforms current state-of-the-art 3D inpainting methods quantitatively and qualitatively.
February 2025. https://arxiv.org/abs/2502.11801
152 Exploring the Versal AI Engine for 3D Gaussian Splatting Kotaro Shimamura,Ayumi Ohno,Shinya Takamaeda-Yamazaki
AbstractDataflow-oriented spatial architectures are the emerging paradigm for higher computation performance and efficiency. AMD Versal AI Engine is a commercial spatial architecture consisting of tiles of VLIW processors supporting SIMD operations arranged in a two-dimensional mesh. The architecture requires the explicit design of task assignments and dataflow configurations for each tile to maximize performance, demanding advanced techniques and meticulous design. However, a few works revealed the performance characteristics of the Versal AI Engine through practical workloads. In this work, we provide the comprehensive performance evaluation of the Versal AI Engine using Gaussian feature computation in 3D Gaussian splatting as a practical workload, and we then propose a novel dedicated algorithm to fully exploit the hardware architecture. The computations of 3D Gaussian splatting include matrix multiplications and color computations utilizing high-dimensional spherical harmonic coefficients. These tasks are processed efficiently by leveraging the SIMD capabilities and their instruction-level parallelism. Additionally, pipelined processing is achieved by assigning different tasks to individual cores, thereby fully exploiting the spatial parallelism of AI Engines. The proposed method demonstrated a 226-fold throughput increase in simulation-based evaluation, outperforming a naive approach. These findings provide valuable insights for application development that effectively harnesses the spatial and architectural advantages of AI Engines.
February 2025. https://arxiv.org/abs/2502.11782
151 GaussianMotion: End-to-End Learning of Animatable Gaussian Avatars with Pose Guidance from Text Gyumin Shim,Sangmin Lee,Jaegul Choo
AbstractIn this paper, we introduce GaussianMotion, a novel human rendering model that generates fully animatable scenes aligned with textual descriptions using Gaussian Splatting. Although existing methods achieve reasonable text-to-3D generation of human bodies using various 3D representations, they often face limitations in fidelity and efficiency, or primarily focus on static models with limited pose control. In contrast, our method generates fully animatable 3D avatars by combining deformable 3D Gaussian Splatting with text-to-3D score distillation, achieving high fidelity and efficient rendering for arbitrary poses. By densely generating diverse random poses during optimization, our deformable 3D human model learns to capture a wide range of natural motions distilled from a pose-conditioned diffusion model in an end-to-end manner. Furthermore, we propose Adaptive Score Distillation that effectively balances realistic detail and smoothness to achieve optimal 3D results. Experimental results demonstrate that our approach outperforms existing baselines by producing high-quality textures in both static and animated results, and by generating diverse 3D human models from various textual inputs.
February 2025. https://arxiv.org/abs/2502.11642
150 3D Reconstruction of Shoes for Augmented Reality Pratik Shrestha,Sujan Kapali,Swikar Gautam,Vishal Pokharel,Santosh Giri
AbstractThis paper introduces a mobile-based solution that enhances online shoe shopping through 3D modeling and Augmented Reality (AR), leveraging the efficiency of 3D Gaussian Splatting. Addressing the limitations of static 2D images, the framework generates realistic 3D shoe models from 2D images, achieving an average Peak Signal-to-Noise Ratio (PSNR) of 32, and enables immersive AR interactions via smartphones. A custom shoe segmentation dataset of 3120 images was created, with the best-performing segmentation model achieving an Intersection over Union (IoU) score of 0.95. This paper demonstrates the potential of 3D modeling and AR to revolutionize online shopping by offering realistic virtual interactions, with applicability across broader fashion categories.
January 2025. https://arxiv.org/abs/2501.18643
149 View-Consistent 3D Editing with Gaussian Splatting Yuxuan Wang,Xuanyu Yi,Zike Wu,Na Zhao,Long Chen,Hanwang Zhang
AbstractThe advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes. Further video results are shown in http://vcedit.github.io.
March 2024. https://arxiv.org/abs/2403.11868
148 OMG: Opacity Matters in Material Modeling with Gaussian Splatting Silong Yong,Venkata Nagarjun Pudureddiyur Manivannan,Bernhard Kerbl,Zifu Wan,Simon Stepputtis,Katia Sycara,Yaqi Xie
AbstractDecomposing geometry, materials and lighting from a set of images, namely inverse rendering, has been a long-standing problem in computer vision and graphics. Recent advances in neural rendering enable photo-realistic and plausible inverse rendering results. The emergence of 3D Gaussian Splatting has boosted it to the next level by showing real-time rendering potentials. An intuitive finding is that the models used for inverse rendering do not take into account the dependency of opacity w.r.t. material properties, namely cross section, as suggested by optics. Therefore, we develop a novel approach that adds this dependency to the modeling itself. Inspired by radiative transfer, we augment the opacity term by introducing a neural network that takes as input material properties to provide modeling of cross section and a physically correct activation function. The gradients for material properties are therefore not only from color but also from opacity, facilitating a constraint for their optimization. Therefore, the proposed method incorporates more accurate physical properties compared to previous works. We implement our method into 3 different baselines that use Gaussian Splatting for inverse rendering and achieve significant improvements universally in terms of novel view synthesis and material modeling.
February 2025. https://arxiv.org/abs/2502.10988
147 GS-GVINS: A Tightly-integrated GNSS-Visual-Inertial Navigation System Augmented by 3D Gaussian Splatting Zelin Zhou,Saurav Uprety,Shichuang Nie,Hongzhou Yang
AbstractRecently, the emergence of 3D Gaussian Splatting (3DGS) has drawn significant attention in the area of 3D map reconstruction and visual SLAM. While extensive research has explored 3DGS for indoor trajectory tracking using visual sensor alone or in combination with Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU), its integration with GNSS for large-scale outdoor navigation remains underexplored. To address these concerns, we proposed GS-GVINS: a tightly-integrated GNSS-Visual-Inertial Navigation System augmented by 3DGS. This system leverages 3D Gaussian as a continuous differentiable scene representation in largescale outdoor environments, enhancing navigation performance through the constructed 3D Gaussian map. Notably, GS-GVINS is the first GNSS-Visual-Inertial navigation application that directly utilizes the analytical jacobians of SE3 camera pose with respect to 3D Gaussians. To maintain the quality of 3DGS rendering in extreme dynamic states, we introduce a motionaware 3D Gaussian pruning mechanism, updating the map based on relative pose translation and the accumulated opacity along the camera ray. For validation, we test our system under different driving environments: open-sky, sub-urban, and urban. Both self-collected and public datasets are used for evaluation. The results demonstrate the effectiveness of GS-GVINS in enhancing navigation accuracy across diverse driving environments.
February 2025. https://arxiv.org/abs/2502.10975
146 E-3DGS: Event-Based Novel View Rendering of Large-Scale Scenes Using 3D Gaussian Splatting Sohaib Zahid,Viktor Rudnev,Eddy Ilg,Vladislav Golyanik
AbstractNovel view synthesis techniques predominantly utilize RGB cameras, inheriting their limitations such as the need for sufficient lighting, susceptibility to motion blur, and restricted dynamic range. In contrast, event cameras are significantly more resilient to these limitations but have been less explored in this domain, particularly in large-scale settings. Current methodologies primarily focus on front-facing or object-oriented (360-degree view) scenarios. For the first time, we introduce 3D Gaussians for event-based novel view synthesis. Our method reconstructs large and unbounded scenes with high visual quality. We contribute the first real and synthetic event datasets tailored for this setting. Our method demonstrates superior novel view synthesis and consistently outperforms the baseline EventNeRF by a margin of 11-25% in PSNR (dB) while being orders of magnitude faster in reconstruction and rendering.
February 2025. https://arxiv.org/abs/2502.10827
145 GaussianSpa: An "Optimizing-Sparsifying" Simplification Framework for Compact and High-Quality 3D Gaussian Splatting Yangming Zhang,Wenqi Jia,Wei Niu,Miao Yin
Abstract3D Gaussian Splatting (3DGS) has emerged as a mainstream for novel view synthesis, leveraging continuous aggregations of Gaussian functions to model scene geometry. However, 3DGS suffers from substantial memory requirements to store the multitude of Gaussians, hindering its practicality. To address this challenge, we introduce GaussianSpa, an optimization-based simplification framework for compact and high-quality 3DGS. Specifically, we formulate the simplification as an optimization problem associated with the 3DGS training. Correspondingly, we propose an efficient "optimizing-sparsifying" solution that alternately solves two independent sub-problems, gradually imposing strong sparsity onto the Gaussians in the training process. Our comprehensive evaluations on various datasets show the superiority of GaussianSpa over existing state-of-the-art approaches. Notably, GaussianSpa achieves an average PSNR improvement of 0.9 dB on the real-world Deep Blending dataset with 10$\times$ fewer Gaussians compared to the vanilla 3DGS. Our project page is available at https://noodle-lab.github.io/gaussianspa/.
November 2024. https://arxiv.org/abs/2411.06019
144 Self-Calibrating Gaussian Splatting for Large Field of View Reconstruction Youming Deng,Wenqi Xian,Guandao Yang,Leonidas Guibas,Gordon Wetzstein,Steve Marschner,Paul Debevec
AbstractIn this paper, we present a self-calibrating framework that jointly optimizes camera parameters, lens distortion and 3D Gaussian representations, enabling accurate and efficient scene reconstruction. In particular, our technique enables high-quality scene reconstruction from Large field-of-view (FOV) imagery taken with wide-angle lenses, allowing the scene to be modeled from a smaller number of images. Our approach introduces a novel method for modeling complex lens distortions using a hybrid network that combines invertible residual networks with explicit grids. This design effectively regularizes the optimization process, achieving greater accuracy than conventional camera models. Additionally, we propose a cubemap-based resampling strategy to support large FOV images without sacrificing resolution or introducing distortion artifacts. Our method is compatible with the fast rasterization of Gaussian Splatting, adaptable to a wide variety of camera lens distortion, and demonstrates state-of-the-art performance on both synthetic and real-world datasets.
February 2025. https://arxiv.org/abs/2502.09563
143 X-SG$^2$S: Safe and Generalizable Gaussian Splatting with X-dimensional Watermarks Zihang Cheng,Huiping Zhuang,Chun Li,Xin Meng,Ming Li,Fei Richard Yu
Abstract3D Gaussian Splatting (3DGS) has been widely used in 3D reconstruction and 3D generation. Training to get a 3DGS scene often takes a lot of time and resources and even valuable inspiration. The increasing amount of 3DGS digital asset have brought great challenges to the copyright protection. However, it still lacks profound exploration targeted at 3DGS. In this paper, we propose a new framework X-SG$^2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged. Generally, we have a X-SG$^2$S injector for adding multi-modal messages simultaneously and an extractor for extract them. Specifically, we first split the watermarks into message patches in a fixed manner and sort the 3DGS points. A self-adaption gate is used to pick out suitable location for watermarking. Then use a XD(multi-dimension)-injection heads to add multi-modal messages into sorted 3DGS points. A learnable gate can recognize the location with extra messages and XD-extraction heads can restore hidden messages from the location recommended by the learnable gate. Extensive experiments demonstrated that the proposed X-SG$^2$S can effectively conceal multi modal messages without changing pretrained 3DGS pipeline or the original form of 3DGS parameters. Meanwhile, with simple and efficient model structure and high practicality, X-SG$^2$S still shows good performance in hiding and extracting multi-modal inner structured or unstructured messages. X-SG$^2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS which pave the wave for later researches.
February 2025. https://arxiv.org/abs/2502.10475
142 4-LEGS: 4D Language Embedded Gaussian Splatting Gal Fiebelman,Tamir Cohen,Ayellet Morgenstern,Peter Hedman,Hadar Averbuch-Elor
AbstractThe emergence of neural representations has revolutionized our means for digitally viewing a wide range of 3D scenes, enabling the synthesis of photorealistic images rendered from novel views. Recently, several techniques have been proposed for connecting these low-level representations with the high-level semantics understanding embodied within the scene. These methods elevate the rich semantic understanding from 2D imagery to 3D representations, distilling high-dimensional spatial features onto 3D space. In our work, we are interested in connecting language with a dynamic modeling of the world. We show how to lift spatio-temporal features to a 4D representation based on 3D Gaussian Splatting. This enables an interactive interface where the user can spatiotemporally localize events in the video from text prompts. We demonstrate our system on public 3D video datasets of people and animals performing various actions.
October 2024. https://arxiv.org/abs/2410.10719
141 Gaussian-Det: Learning Closed-Surface Gaussians for 3D Object Detection Hongru Yan,Yu Zheng,Yueqi Duan
AbstractSkins wrapping around our bodies, leathers covering over the sofa, sheet metal coating the car - it suggests that objects are enclosed by a series of continuous surfaces, which provides us with informative geometry prior for objectness deduction. In this paper, we propose Gaussian-Det which leverages Gaussian Splatting as surface representation for multi-view based 3D object detection. Unlike existing monocular or NeRF-based methods which depict the objects via discrete positional data, Gaussian-Det models the objects in a continuous manner by formulating the input Gaussians as feature descriptors on a mass of partial surfaces. Furthermore, to address the numerous outliers inherently introduced by Gaussian splatting, we accordingly devise a Closure Inferring Module (CIM) for the comprehensive surface-based objectness deduction. CIM firstly estimates the probabilistic feature residuals for partial surfaces given the underdetermined nature of Gaussian Splatting, which are then coalesced into a holistic representation on the overall surface closure of the object proposal. In this way, the surface information Gaussian-Det exploits serves as the prior on the quality and reliability of objectness and the information basis of proposal refinement. Experiments on both synthetic and real-world datasets demonstrate that Gaussian-Det outperforms various existing approaches, in terms of both average precision and recall.
October 2024. https://arxiv.org/abs/2410.01404
140 DenseSplat: Densifying Gaussian Splatting SLAM with Neural Radiance Prior Mingrui Li,Shuhong Liu,Tianchen Deng,Hongyu Wang
AbstractGaussian SLAM systems excel in real-time rendering and fine-grained reconstruction compared to NeRF-based systems. However, their reliance on extensive keyframes is impractical for deployment in real-world robotic systems, which typically operate under sparse-view conditions that can result in substantial holes in the map. To address these challenges, we introduce DenseSplat, the first SLAM system that effectively combines the advantages of NeRF and 3DGS. DenseSplat utilizes sparse keyframes and NeRF priors for initializing primitives that densely populate maps and seamlessly fill gaps. It also implements geometry-aware primitive sampling and pruning strategies to manage granularity and enhance rendering efficiency. Moreover, DenseSplat integrates loop closure and bundle adjustment, significantly enhancing frame-to-frame tracking accuracy. Extensive experiments on multiple large-scale datasets demonstrate that DenseSplat achieves superior performance in tracking and mapping compared to current state-of-the-art methods.
February 2025. https://arxiv.org/abs/2502.09111
139 Large Images are Gaussians: High-Quality Large Image Representation with Levels of 2D Gaussian Splatting Lingting Zhu,Guying Lin,Jinnan Chen,Xinjie Zhang,Zhenchao Jin,Zhao Wang,Lequan Yu
AbstractWhile Implicit Neural Representations (INRs) have demonstrated significant success in image representation, they are often hindered by large training memory and slow decoding speed. Recently, Gaussian Splatting (GS) has emerged as a promising solution in 3D reconstruction due to its high-quality novel view synthesis and rapid rendering capabilities, positioning it as a valuable tool for a broad spectrum of applications. In particular, a GS-based representation, 2DGS, has shown potential for image fitting. In our work, we present \textbf{L}arge \textbf{I}mages are \textbf{G}aussians (\textbf{LIG}), which delves deeper into the application of 2DGS for image representations, addressing the challenge of fitting large images with 2DGS in the situation of numerous Gaussian points, through two distinct modifications: 1) we adopt a variant of representation and optimization strategy, facilitating the fitting of a large number of Gaussian points; 2) we propose a Level-of-Gaussian approach for reconstructing both coarse low-frequency initialization and fine high-frequency details. Consequently, we successfully represent large images as Gaussian points and achieve high-quality large image representation, demonstrating its efficacy across various types of large images. Code is available at {\href{https://github.com/HKU-MedAI/LIG}{https://github.com/HKU-MedAI/LIG}}.
February 2025. https://arxiv.org/abs/2502.09039
138 RenderWorld: World Model with Self-Supervised 3D Label Ziyang Yan,Wenzhen Dong,Yihua Shao,Yuhang Lu,Liu Haiyang,Jingwen Liu,Haozhe Wang,Zhe Wang,Yan Wang,Fabio Remondino,Yuexin Ma
AbstractEnd-to-end autonomous driving with vision-only is not only more cost-effective compared to LiDAR-vision fusion but also more reliable than traditional methods. To achieve a economical and robust purely visual autonomous driving system, we propose RenderWorld, a vision-only end-to-end autonomous driving framework, which generates 3D occupancy labels using a self-supervised gaussian-based Img2Occ Module, then encodes the labels by AM-VAE, and uses world model for forecasting and planning. RenderWorld employs Gaussian Splatting to represent 3D scenes and render 2D images greatly improves segmentation accuracy and reduces GPU memory consumption compared with NeRF-based methods. By applying AM-VAE to encode air and non-air separately, RenderWorld achieves more fine-grained scene element representation, leading to state-of-the-art performance in both 4D occupancy forecasting and motion planning from autoregressive world model.
September 2024. https://arxiv.org/abs/2409.11356
137 MiraGe: Editable 2D Images using Gaussian Splatting Joanna Waczy\xc5\x84ska,Tomasz Szczepanik,Piotr Borycki,S\xc5\x82awomir Tadeja,Thomas Bohn\xc3\xa9,Przemys\xc5\x82aw Spurek
AbstractImplicit Neural Representations (INRs) approximate discrete data through continuous functions and are commonly used for encoding 2D images. Traditional image-based INRs employ neural networks to map pixel coordinates to RGB values, capturing shapes, colors, and textures within the network's weights. Recently, GaussianImage has been proposed as an alternative, using Gaussian functions instead of neural networks to achieve comparable quality and compression. Such a solution obtains a quality and compression ratio similar to classical INR models but does not allow image modification. In contrast, our work introduces a novel method, MiraGe, which uses mirror reflections to perceive 2D images in 3D space and employs flat-controlled Gaussians for precise 2D image editing. Our approach improves the rendering quality and allows realistic image modifications, including human-inspired perception of photos in the 3D world. Thanks to modeling images in 3D space, we obtain the illusion of 3D-based modification in 2D images. We also show that our Gaussian representation can be easily combined with a physics engine to produce physics-based modification of 2D images. Consequently, MiraGe allows for better quality than the standard approach and natural modification of 2D images
October 2024. https://arxiv.org/abs/2410.01521
136 3D Gaussian Splatting as Markov Chain Monte Carlo Shakiba Kheradmand,Daniel Rebain,Gopal Sharma,Weiwei Sun,Jeff Tseng,Hossam Isack,Abhishek Kar,Andrea Tagliasacchi,Kwang Moo Yi
AbstractWhile 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene-in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) updates by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the 'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.
April 2024. https://arxiv.org/abs/2404.09591
135 WeatherGS: 3D Scene Reconstruction in Adverse Weather Conditions via Gaussian Splatting Chenghao Qian,Yuhu Guo,Wenjing Li,Gustav Markkula
Abstract3D Gaussian Splatting (3DGS) has gained significant attention for 3D scene reconstruction, but still suffers from complex outdoor environments, especially under adverse weather. This is because 3DGS treats the artifacts caused by adverse weather as part of the scene and will directly reconstruct them, largely reducing the clarity of the reconstructed scene. To address this challenge, we propose WeatherGS, a 3DGS-based framework for reconstructing clear scenes from multi-view images under different weather conditions. Specifically, we explicitly categorize the multi-weather artifacts into the dense particles and lens occlusions that have very different characters, in which the former are caused by snowflakes and raindrops in the air, and the latter are raised by the precipitation on the camera lens. In light of this, we propose a dense-to-sparse preprocess strategy, which sequentially removes the dense particles by an Atmospheric Effect Filter (AEF) and then extracts the relatively sparse occlusion masks with a Lens Effect Detector (LED). Finally, we train a set of 3D Gaussians by the processed images and generated masks for excluding occluded areas, and accurately recover the underlying clear scene by Gaussian splatting. We conduct a diverse and challenging benchmark to facilitate the evaluation of 3D reconstruction under complex weather scenarios. Extensive experiments on this benchmark demonstrate that our WeatherGS consistently produces high-quality, clean scenes across various weather scenarios, outperforming existing state-of-the-art methods. See project page:https://jumponthemoon.github.io/weather-gs.
December 2024. https://arxiv.org/abs/2412.18862
134 Interactive Holographic Visualization for 3D Facial Avatar Tri Tung Nguyen Nguyen,Fujii Yasuyuki,Dinh Tuan Tran,Joo-Ho Lee
AbstractTraditional methods for visualizing dynamic human expressions, particularly in medical training, often rely on flat-screen displays or static mannequins, which have proven inefficient for realistic simulation. In response, we propose a platform that leverages a 3D interactive facial avatar capable of displaying non-verbal feedback, including pain signals. This avatar is projected onto a stereoscopic, view-dependent 3D display, offering a more immersive and realistic simulated patient experience for pain assessment practice. However, there is no existing solution that dynamically predicts and projects interactive 3D facial avatars in real-time. To overcome this, we emphasize the need for a 3D display projection system that can project the facial avatar holographically, allowing users to interact with the avatar from any viewpoint. By incorporating 3D Gaussian Splatting (3DGS) and real-time view-dependent calibration, we significantly improve the training environment for accurate pain recognition and assessment.
February 2025. https://arxiv.org/abs/2502.08085
133 UVGS: Reimagining Unstructured 3D Gaussian Splatting using UV Mapping Aashish Rai,Dilin Wang,Mihir Jain,Nikolaos Sarafianos,Kefan Chen,Srinath Sridhar,Aayush Prakash
Abstract3D Gaussian Splatting (3DGS) has demonstrated superior quality in modeling 3D objects and scenes. However, generating 3DGS remains challenging due to their discrete, unstructured, and permutation-invariant nature. In this work, we present a simple yet effective method to overcome these challenges. We utilize spherical mapping to transform 3DGS into a structured 2D representation, termed UVGS. UVGS can be viewed as multi-channel images, with feature dimensions as a concatenation of Gaussian attributes such as position, scale, color, opacity, and rotation. We further find that these heterogeneous features can be compressed into a lower-dimensional (e.g., 3-channel) shared feature space using a carefully designed multi-branch network. The compressed UVGS can be treated as typical RGB images. Remarkably, we discover that typical VAEs trained with latent diffusion models can directly generalize to this new representation without additional training. Our novel representation makes it effortless to leverage foundational 2D models, such as diffusion models, to directly model 3DGS. Additionally, one can simply increase the 2D UV resolution to accommodate more Gaussians, making UVGS a scalable solution compared to typical 3D backbones. This approach immediately unlocks various novel generation applications of 3DGS by inherently utilizing the already developed superior 2D generation capabilities. In our experiments, we demonstrate various unconditional, conditional generation, and inpainting applications of 3DGS based on diffusion models, which were previously non-trivial.
February 2025. https://arxiv.org/abs/2502.01846
132 MeshSplats: Mesh-Based Rendering with Gaussian Splatting Initialization Rafa\xc5\x82 Tobiasz,Grzegorz Wilczy\xc5\x84ski,Marcin Mazur,S\xc5\x82awomir Tadeja,Przemys\xc5\x82aw Spurek
AbstractGaussian Splatting (GS) is a recent and pivotal technique in 3D computer graphics. GS-based algorithms almost always bypass classical methods such as ray tracing, which offers numerous inherent advantages for rendering. For example, ray tracing is able to handle incoherent rays for advanced lighting effects, including shadows and reflections. To address this limitation, we introduce MeshSplats, a method which converts GS to a mesh-like format. Following the completion of training, MeshSplats transforms Gaussian elements into mesh faces, enabling rendering using ray tracing methods with all their associated benefits. Our model can be utilized immediately following transformation, yielding a mesh of slightly reduced quality without additional training. Furthermore, we can enhance the reconstruction quality through the application of a dedicated optimization algorithm that operates on mesh faces rather than Gaussian components. The efficacy of our method is substantiated by experimental results, underscoring its extensive applications in computer graphics and image processing.
February 2025. https://arxiv.org/abs/2502.07754
131 Flow Distillation Sampling: Regularizing 3D Gaussians with Pre-trained Matching Priors Lin-Zhuo Chen,Kangjie Liu,Youtian Lin,Siyu Zhu,Zhihao Li,Xun Cao,Yao Yao
Abstract3D Gaussian Splatting (3DGS) has achieved excellent rendering quality with fast training and rendering speed. However, its optimization process lacks explicit geometric constraints, leading to suboptimal geometric reconstruction in regions with sparse or no observational input views. In this work, we try to mitigate the issue by incorporating a pre-trained matching prior to the 3DGS optimization process. We introduce Flow Distillation Sampling (FDS), a technique that leverages pre-trained geometric knowledge to bolster the accuracy of the Gaussian radiance field. Our method employs a strategic sampling technique to target unobserved views adjacent to the input views, utilizing the optical flow calculated from the matching model (Prior Flow) to guide the flow analytically calculated from the 3DGS geometry (Radiance Flow). Comprehensive experiments in depth rendering, mesh reconstruction, and novel view synthesis showcase the significant advantages of FDS over state-of-the-art methods. Additionally, our interpretive experiments and analysis aim to shed light on the effects of FDS on geometric accuracy and rendering quality, potentially providing readers with insights into its performance. Project page: https://nju-3dv.github.io/projects/fds
February 2025. https://arxiv.org/abs/2502.07615
130 EdgeGaussians -- 3D Edge Mapping via Gaussian Splatting Kunal Chelani,Assia Benbihi,Torsten Sattler,Fredrik Kahl
AbstractWith their meaningful geometry and their omnipresence in the 3D world, edges are extremely useful primitives in computer vision. 3D edges comprise of lines and curves, and methods to reconstruct them use either multi-view images or point clouds as input. State-of-the-art image-based methods first learn a 3D edge point cloud then fit 3D edges to it. The edge point cloud is obtained by learning a 3D neural implicit edge field from which the 3D edge points are sampled on a specific level set (0 or 1). However, such methods present two important drawbacks: i) it is not realistic to sample points on exact level sets due to float imprecision and training inaccuracies. Instead, they are sampled within a range of levels so the points do not lie accurately on the 3D edges and require further processing. ii) Such implicit representations are computationally expensive and require long training times. In this paper, we address these two limitations and propose a 3D edge mapping that is simpler, more efficient, and preserves accuracy. Our method learns explicitly the 3D edge points and their edge direction hence bypassing the need for point sampling. It casts a 3D edge point as the center of a 3D Gaussian and the edge direction as the principal axis of the Gaussian. Such a representation has the advantage of being not only geometrically meaningful but also compatible with the efficient training optimization defined in Gaussian Splatting. Results show that the proposed method produces edges as accurate and complete as the state-of-the-art while being an order of magnitude faster. Code is released at https://github.com/kunalchelani/EdgeGaussians.
September 2024. https://arxiv.org/abs/2409.12886
129 HAC++: Towards 100X Compression of 3D Gaussian Splatting Yihang Chen,Qianyi Wu,Weiyao Lin,Mehrtash Harandi,Jianfei Cai
Abstract3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To achieve a compact size, we propose HAC++, which leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over 100X compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than 20X size reduction compared to Scaffold-GS. Our code is available at https://github.com/YihangChen-ee/HAC-plus.
January 2025. https://arxiv.org/abs/2501.12255
128 PoI: Pixel of Interest for Novel View Synthesis Assisted Scene Coordinate Regression Feifei Li,Qi Song,Chi Zhang,Hui Shuai,Rui Huang
AbstractThe task of estimating camera poses can be enhanced through novel view synthesis techniques such as NeRF and Gaussian Splatting to increase the diversity and extension of training data. However, these techniques often produce rendered images with issues like blurring and ghosting, which compromise their reliability. These issues become particularly pronounced for Scene Coordinate Regression (SCR) methods, which estimate 3D coordinates at the pixel level. To mitigate the problems associated with unreliable rendered images, we introduce a novel filtering approach, which selectively extracts well-rendered pixels while discarding the inferior ones. This filter simultaneously measures the SCR model's real-time reprojection loss and gradient during training. Building on this filtering technique, we also develop a new strategy to improve scene coordinate regression using sparse inputs, drawing on successful applications of sparse input techniques in novel view synthesis. Our experimental results validate the effectiveness of our method, demonstrating state-of-the-art performance on indoor and outdoor datasets.
February 2025. https://arxiv.org/abs/2502.04843
127 BillBoard Splatting (BBSplat): Learnable Textured Primitives for Novel View Synthesis David Svitov,Pietro Morerio,Lourdes Agapito,Alessio Del Bue
AbstractWe present billboard Splatting (BBSplat) - a novel approach for 3D scene representation based on textured geometric primitives. BBSplat represents the scene as a set of optimizable textured planar primitives with learnable RGB textures and alpha-maps to control their shape. BBSplat primitives can be used in any Gaussian Splatting pipeline as drop-in replacements for Gaussians. The proposed primitives close the rendering quality gap between 2D and 3D Gaussian Splatting (GS), preserving the accurate mesh extraction ability of 2D primitives. Our novel regularization term encourages textures to have a sparser structure, unlocking an efficient compression that leads to a reduction in the storage space of the model. Our experiments show the efficiency of BBSplat on standard datasets of real indoor and outdoor scenes such as Tanks&Temples, DTU, and Mip-NeRF-360.
November 2024. https://arxiv.org/abs/2411.08508
126 DreamCatalyst: Fast and High-Quality 3D Editing via Controlling Editability and Identity Preservation Jiwook Kim,Seonho Lee,Jaeyo Shin,Jiho Choi,Hyunjung Shim
AbstractScore distillation sampling (SDS) has emerged as an effective framework in text-driven 3D editing tasks, leveraging diffusion models for 3D-consistent editing. However, existing SDS-based 3D editing methods suffer from long training times and produce low-quality results. We identify that the root cause of this performance degradation is \textit{their conflict with the sampling dynamics of diffusion models}. Addressing this conflict allows us to treat SDS as a diffusion reverse process for 3D editing via sampling from data space. In contrast, existing methods naively distill the score function using diffusion models. From these insights, we propose DreamCatalyst, a novel framework that considers these sampling dynamics in the SDS framework. Specifically, we devise the optimization process of our DreamCatalyst to approximate the diffusion reverse process in editing tasks, thereby aligning with diffusion sampling dynamics. As a result, DreamCatalyst successfully reduces training time and improves editing quality. Our method offers two modes: (1) a fast mode that edits Neural Radiance Fields (NeRF) scenes approximately 23 times faster than current state-of-the-art NeRF editing methods, and (2) a high-quality mode that produces superior results about 8 times faster than these methods. Notably, our high-quality mode outperforms current state-of-the-art NeRF editing methods in terms of both speed and quality. DreamCatalyst also surpasses the state-of-the-art 3D Gaussian Splatting (3DGS) editing methods, establishing itself as an effective and model-agnostic 3D editing solution. See more extensive results on our project page: https://dream-catalyst.github.io.
July 2024. https://arxiv.org/abs/2407.11394
125 TranSplat: Surface Embedding-guided 3D Gaussian Splatting for Transparent Object Manipulation Jeongyun Kim,Jeongho Noh,Dong-Guw Lee,Ayoung Kim
AbstractTransparent object manipulation remains a significant challenge in robotics due to the difficulty of acquiring accurate and dense depth measurements. Conventional depth sensors often fail with transparent objects, resulting in incomplete or erroneous depth data. Existing depth completion methods struggle with interframe consistency and incorrectly model transparent objects as Lambertian surfaces, leading to poor depth reconstruction. To address these challenges, we propose TranSplat, a surface embedding-guided 3D Gaussian Splatting method tailored for transparent objects. TranSplat uses a latent diffusion model to generate surface embeddings that provide consistent and continuous representations, making it robust to changes in viewpoint and lighting. By integrating these surface embeddings with input RGB images, TranSplat effectively captures the complexities of transparent surfaces, enhancing the splatting of 3D Gaussians and improving depth completion. Evaluations on synthetic and real-world transparent object benchmarks, as well as robot grasping tasks, show that TranSplat achieves accurate and dense depth completion, demonstrating its effectiveness in practical applications. We open-source synthetic dataset and model: https://github. com/jeongyun0609/TranSplat
February 2025. https://arxiv.org/abs/2502.07840
124 Digital Twin Buildings: 3D Modeling, GIS Integration, and Visual Descriptions Using Gaussian Splatting, ChatGPT/Deepseek, and Google Maps Platform Kyle Gao,Dening Lu,Liangzhi Li,Nan Chen,Hongjie He,Linlin Xu,Jonathan Li
AbstractUrban digital twins are virtual replicas of cities that use multi-source data and data analytics to optimize urban planning, infrastructure management, and decision-making. Towards this, we propose a framework focused on the single-building scale. By connecting to cloud mapping platforms such as Google Map Platforms APIs, by leveraging state-of-the-art multi-agent Large Language Models data analysis using ChatGPT(4o) and Deepseek-V3/R1, and by using our Gaussian Splatting-based mesh extraction pipeline, our Digital Twin Buildings framework can retrieve a building's 3D model, visual descriptions, and achieve cloud-based mapping integration with large language model-based data analytics using a building's address, postal code, or geographic coordinates.
February 2025. https://arxiv.org/abs/2502.05769
123 Grounding Creativity in Physics: A Brief Survey of Physical Priors in AIGC Siwei Meng,Yawei Luo,Ping Liu
AbstractRecent advancements in AI-generated content have significantly improved the realism of 3D and 4D generation. However, most existing methods prioritize appearance consistency while neglecting underlying physical principles, leading to artifacts such as unrealistic deformations, unstable dynamics, and implausible objects interactions. Incorporating physics priors into generative models has become a crucial research direction to enhance structural integrity and motion realism. This survey provides a review of physics-aware generative methods, systematically analyzing how physical constraints are integrated into 3D and 4D generation. First, we examine recent works in incorporating physical priors into static and dynamic 3D generation, categorizing methods based on representation types, including vision-based, NeRF-based, and Gaussian Splatting-based approaches. Second, we explore emerging techniques in 4D generation, focusing on methods that model temporal dynamics with physical simulations. Finally, we conduct a comparative analysis of major methods, highlighting their strengths, limitations, and suitability for different materials and motion dynamics. By presenting an in-depth analysis of physics-grounded AIGC, this survey aims to bridge the gap between generative models and physical realism, providing insights that inspire future research in physically consistent content generation.
February 2025. https://arxiv.org/abs/2502.07007
122 SIREN: Semantic, Initialization-Free Registration of Multi-Robot Gaussian Splatting Maps Ola Shorinwa,Jiankai Sun,Mac Schwager,Anirudha Majumdar
AbstractWe present SIREN for registration of multi-robot Gaussian Splatting (GSplat) maps, with zero access to camera poses, images, and inter-map transforms for initialization or fusion of local submaps. To realize these capabilities, SIREN harnesses the versatility and robustness of semantics in three critical ways to derive a rigorous registration pipeline for multi-robot GSplat maps. First, SIREN utilizes semantics to identify feature-rich regions of the local maps where the registration problem is better posed, eliminating the need for any initialization which is generally required in prior work. Second, SIREN identifies candidate correspondences between Gaussians in the local maps using robust semantic features, constituting the foundation for robust geometric optimization, coarsely aligning 3D Gaussian primitives extracted from the local maps. Third, this key step enables subsequent photometric refinement of the transformation between the submaps, where SIREN leverages novel-view synthesis in GSplat maps along with a semantics-based image filter to compute a high-accuracy non-rigid transformation for the generation of a high-fidelity fused map. We demonstrate the superior performance of SIREN compared to competing baselines across a range of real-world datasets, and in particular, across the most widely-used robot hardware platforms, including a manipulator, drone, and quadruped. In our experiments, SIREN achieves about 90x smaller rotation errors, 300x smaller translation errors, and 44x smaller scale errors in the most challenging scenes, where competing methods struggle. We will release the code and provide a link to the project page after the review process.
February 2025. https://arxiv.org/abs/2502.06519
121 EnerVerse: Envisioning Embodied Future Space for Robotics Manipulation Siyuan Huang,Liliang Chen,Pengfei Zhou,Shengcong Chen,Zhengkai Jiang,Yue Hu,Yue Liao,Peng Gao,Hongsheng Li,Maoqing Yao,Guanghui Ren
AbstractWe introduce EnerVerse, a generative robotics foundation model that constructs and interprets embodied spaces. EnerVerse employs an autoregressive video diffusion framework to predict future embodied spaces from instructions, enhanced by a sparse context memory for long-term reasoning. To model the 3D robotics world, we propose Free Anchor Views (FAVs), a multi-view video representation offering flexible, task-adaptive perspectives to address challenges like motion ambiguity and environmental constraints. Additionally, we present EnerVerse-D, a data engine pipeline combining the generative model with 4D Gaussian Splatting, forming a self-reinforcing data loop to reduce the sim-to-real gap. Leveraging these innovations, EnerVerse translates 4D world representations into physical actions via a policy head (EnerVerse-A), enabling robots to execute task instructions. EnerVerse-A achieves state-of-the-art performance in both simulation and real-world settings.
January 2025. https://arxiv.org/abs/2501.01895
120 LapisGS: Layered Progressive 3D Gaussian Splatting for Adaptive Streaming Yuang Shi,G\xc3\xa9raldine Morin,Simone Gasparini,Wei Tsang Ooi
AbstractThe rise of Extended Reality (XR) requires efficient streaming of 3D online worlds, challenging current 3DGS representations to adapt to bandwidth-constrained environments. This paper proposes LapisGS, a layered 3DGS that supports adaptive streaming and progressive rendering. Our method constructs a layered structure for cumulative representation, incorporates dynamic opacity optimization to maintain visual fidelity, and utilizes occupancy maps to efficiently manage Gaussian splats. This proposed model offers a progressive representation supporting a continuous rendering quality adapted for bandwidth-aware streaming. Extensive experiments validate the effectiveness of our approach in balancing visual fidelity with the compactness of the model, with up to 50.71% improvement in SSIM, 286.53% improvement in LPIPS with 23% of the original model size, and shows its potential for bandwidth-adapted 3D streaming and rendering applications.
August 2024. https://arxiv.org/abs/2408.14823
119 Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting Zhiqi Li,Yiming Chen,Lingzhe Zhao,Peidong Liu
AbstractWhile text-to-3D and image-to-3D generation tasks have received considerable attention, one important but under-explored field between them is controllable text-to-3D generation, which we mainly focus on in this work. To address this task, 1) we introduce Multi-view ControlNet (MVControl), a novel neural network architecture designed to enhance existing pre-trained multi-view diffusion models by integrating additional input conditions, such as edge, depth, normal, and scribble maps. Our innovation lies in the introduction of a conditioning module that controls the base diffusion model using both local and global embeddings, which are computed from the input condition images and camera poses. Once trained, MVControl is able to offer 3D diffusion guidance for optimization-based 3D generation. And, 2) we propose an efficient multi-stage 3D generation pipeline that leverages the benefits of recent large reconstruction models and score distillation algorithm. Building upon our MVControl architecture, we employ a unique hybrid diffusion guidance method to direct the optimization process. In pursuit of efficiency, we adopt 3D Gaussians as our representation instead of the commonly used implicit representations. We also pioneer the use of SuGaR, a hybrid representation that binds Gaussians to mesh triangle faces. This approach alleviates the issue of poor geometry in 3D Gaussians and enables the direct sculpting of fine-grained geometry on the mesh. Extensive experiments demonstrate that our method achieves robust generalization and enables the controllable generation of high-quality 3D content. Project page: https://lizhiqi49.github.io/MVControl/.
March 2024. https://arxiv.org/abs/2403.09981
118 PINGS: Gaussian Splatting Meets Distance Fields within a Point-Based Implicit Neural Map Yue Pan,Xingguang Zhong,Liren Jin,Louis Wiesmann,Marija Popovi\xc4\x87,Jens Behley,Cyrill Stachniss
AbstractRobots require high-fidelity reconstructions of their environment for effective operation. Such scene representations should be both, geometrically accurate and photorealistic to support downstream tasks. While this can be achieved by building distance fields from range sensors and radiance fields from cameras, the scalable incremental mapping of both fields consistently and at the same time with high quality remains challenging. In this paper, we propose a novel map representation that unifies a continuous signed distance field and a Gaussian splatting radiance field within an elastic and compact point-based implicit neural map. By enforcing geometric consistency between these fields, we achieve mutual improvements by exploiting both modalities. We devise a LiDAR-visual SLAM system called PINGS using the proposed map representation and evaluate it on several challenging large-scale datasets. Experimental results demonstrate that PINGS can incrementally build globally consistent distance and radiance fields encoded with a compact set of neural points. Compared to the state-of-the-art methods, PINGS achieves superior photometric and geometric rendering at novel views by leveraging the constraints from the distance field. Furthermore, by utilizing dense photometric cues and multi-view consistency from the radiance field, PINGS produces more accurate distance fields, leading to improved odometry estimation and mesh reconstruction.
February 2025. https://arxiv.org/abs/2502.05752
117 DEGAS: Detailed Expressions on Full-Body Gaussian Avatars Zhijing Shao,Duotun Wang,Qing-Yao Tian,Yao-Dong Yang,Hengyu Meng,Zeyu Cai,Bo Dong,Yu Zhang,Kang Zhang,Zeyu Wang
AbstractAlthough neural rendering has made significant advances in creating lifelike, animatable full-body and head avatars, incorporating detailed expressions into full-body avatars remains largely unexplored. We present DEGAS, the first 3D Gaussian Splatting (3DGS)-based modeling method for full-body avatars with rich facial expressions. Trained on multiview videos of a given subject, our method learns a conditional variational autoencoder that takes both the body motion and facial expression as driving signals to generate Gaussian maps in the UV layout. To drive the facial expressions, instead of the commonly used 3D Morphable Models (3DMMs) in 3D head avatars, we propose to adopt the expression latent space trained solely on 2D portrait images, bridging the gap between 2D talking faces and 3D avatars. Leveraging the rendering capability of 3DGS and the rich expressiveness of the expression latent space, the learned avatars can be reenacted to reproduce photorealistic rendering images with subtle and accurate facial expressions. Experiments on an existing dataset and our newly proposed dataset of full-body talking avatars demonstrate the efficacy of our method. We also propose an audio-driven extension of our method with the help of 2D talking faces, opening new possibilities for interactive AI agents.
August 2024. https://arxiv.org/abs/2408.10588
116 Vision-in-the-loop Simulation for Deep Monocular Pose Estimation of UAV in Ocean Environment Maneesha Wickramasuriya,Beomyeol Yu,Taeyoung Lee,Murray Snyder
AbstractThis paper proposes a vision-in-the-loop simulation environment for deep monocular pose estimation of a UAV operating in an ocean environment. Recently, a deep neural network with a transformer architecture has been successfully trained to estimate the pose of a UAV relative to the flight deck of a research vessel, overcoming several limitations of GPS-based approaches. However, validating the deep pose estimation scheme in an actual ocean environment poses significant challenges due to the limited availability of research vessels and the associated operational costs. To address these issues, we present a photo-realistic 3D virtual environment leveraging recent advancements in Gaussian splatting, a novel technique that represents 3D scenes by modeling image pixels as Gaussian distributions in 3D space, creating a lightweight and high-quality visual model from multiple viewpoints. This approach enables the creation of a virtual environment integrating multiple real-world images collected in situ. The resulting simulation enables the indoor testing of flight maneuvers while verifying all aspects of flight software, hardware, and the deep monocular pose estimation scheme. This approach provides a cost-effective solution for testing and validating the autonomous flight of shipboard UAVs, specifically focusing on vision-based control and estimation algorithms.
February 2025. https://arxiv.org/abs/2502.05409
115 Neural Surface Priors for Editable Gaussian Splatting Jakub Szymkowiak,Weronika Jakubowska,Dawid Malarz,Weronika Smolak-Dy\xc5\xbcewska,Maciej Zi\xc4\x99ba,Przemyslaw Musialski,Wojtek Pa\xc5\x82ubicki,Przemys\xc5\x82aw Spurek
AbstractIn computer graphics and vision, recovering easily modifiable scene appearance from image data is crucial for applications such as content creation. We introduce a novel method that integrates 3D Gaussian Splatting with an implicit surface representation, enabling intuitive editing of recovered scenes through mesh manipulation. Starting with a set of input images and camera poses, our approach reconstructs the scene surface using a neural signed distance field. This neural surface acts as a geometric prior guiding the training of Gaussian Splatting components, ensuring their alignment with the scene geometry. To facilitate editing, we encode the visual and geometric information into a lightweight triangle soup proxy. Edits applied to the mesh extracted from the neural surface propagate seamlessly through this intermediate structure to update the recovered appearance. Unlike previous methods relying on the triangle soup proxy representation, our approach supports a wider range of modifications and fully leverages the mesh topology, enabling a more flexible and intuitive editing process. The complete source code for this project can be accessed at: https://github.com/WJakubowska/NeuralSurfacePriors.
November 2024. https://arxiv.org/abs/2411.18311
114 AuraFusion360: Augmented Unseen Region Alignment for Reference-based 360\xc2\xb0 Unbounded Scene Inpainting Chung-Ho Wu,Yang-Jung Chen,Ying-Huan Chen,Jie-Ying Lee,Bo-Hsu Ke,Chun-Wei Tuan Mu,Yi-Chuan Huang,Chin-Yang Lin,Min-Hung Chen,Yen-Yu Lin,Yu-Lun Liu
AbstractThree-dimensional scene inpainting is crucial for applications from virtual reality to architectural visualization, yet existing methods struggle with view consistency and geometric accuracy in 360\xc2\xb0 unbounded scenes. We present AuraFusion360, a novel reference-based method that enables high-quality object removal and hole filling in 3D scenes represented by Gaussian Splatting. Our approach introduces (1) depth-aware unseen mask generation for accurate occlusion identification, (2) Adaptive Guided Depth Diffusion, a zero-shot method for accurate initial point placement without requiring additional training, and (3) SDEdit-based detail enhancement for multi-view coherence. We also introduce 360-USID, the first comprehensive dataset for 360\xc2\xb0 unbounded scene inpainting with ground truth. Extensive experiments demonstrate that AuraFusion360 significantly outperforms existing methods, achieving superior perceptual quality while maintaining geometric accuracy across dramatic viewpoint changes. See our project page for video results and the dataset at https://kkennethwu.github.io/aurafusion360/.
February 2025. https://arxiv.org/abs/2502.05176
113 Drag Your Gaussian: Effective Drag-Based Editing with Score Distillation for 3D Gaussian Splatting Yansong Qu,Dian Chen,Xinyang Li,Xiaofan Li,Shengchuan Zhang,Liujuan Cao,Rongrong Ji
AbstractRecent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian.
January 2025. https://arxiv.org/abs/2501.18672
112 GaussRender: Learning 3D Occupancy with Gaussian Rendering Loick Chambon,Eloi Zablocki,Alexandre Boulch,Mickael Chen,Matthieu Cord
AbstractUnderstanding the 3D geometry and semantics of driving scenes is critical for developing of safe autonomous vehicles. While 3D occupancy models are typically trained using voxel-based supervision with standard losses (e.g., cross-entropy, Lovasz, dice), these approaches treat voxel predictions independently, neglecting their spatial relationships. In this paper, we propose GaussRender, a plug-and-play 3D-to-2D reprojection loss that enhances voxel-based supervision. Our method projects 3D voxel representations into arbitrary 2D perspectives and leverages Gaussian splatting as an efficient, differentiable rendering proxy of voxels, introducing spatial dependencies across projected elements. This approach improves semantic and geometric consistency, handles occlusions more efficiently, and requires no architectural modifications. Extensive experiments on multiple benchmarks (SurroundOcc-nuScenes, Occ3D-nuScenes, SSCBench-KITTI360) demonstrate consistent performance gains across various 3D occupancy models (TPVFormer, SurroundOcc, Symphonies), highlighting the robustness and versatility of our framework. The code is available at https://github.com/valeoai/GaussRender.
February 2025. https://arxiv.org/abs/2502.05040
111 OccGS: Zero-shot 3D Occupancy Reconstruction with Semantic and Geometric-Aware Gaussian Splatting Xiaoyu Zhou,Jingqi Wang,Yongtao Wang,Yufei Wei,Nan Dong,Ming-Hsuan Yang
AbstractObtaining semantic 3D occupancy from raw sensor data without manual annotations remains an essential yet challenging task. While prior works have approached this as a perception prediction problem, we formulate it as scene-aware 3D occupancy reconstruction with geometry and semantics. In this work, we propose OccGS, a novel 3D Occupancy reconstruction framework utilizing Semantic and Geometric-Aware Gaussian Splatting in a zero-shot manner. Leveraging semantics extracted from vision-language models and geometry guided by LiDAR points, OccGS constructs Semantic and Geometric-Aware Gaussians from raw multisensor data. We also develop a cumulative Gaussian-to-3D voxel splatting method for reconstructing occupancy from the Gaussians. OccGS performs favorably against self-supervised methods in occupancy prediction, achieving comparable performance to fully supervised approaches and achieving state-of-the-art performance on zero-shot semantic 3D occupancy estimation.
February 2025. https://arxiv.org/abs/2502.04981
110 SC-OmniGS: Self-Calibrating Omnidirectional Gaussian Splatting Huajian Huang,Yingshu Chen,Longwei Li,Hui Cheng,Tristan Braud,Yajie Zhao,Sai-Kit Yeung
Abstract360-degree cameras streamline data collection for radiance field 3D reconstruction by capturing comprehensive scene data. However, traditional radiance field methods do not address the specific challenges inherent to 360-degree images. We present SC-OmniGS, a novel self-calibrating omnidirectional Gaussian splatting system for fast and accurate omnidirectional radiance field reconstruction using 360-degree images. Rather than converting 360-degree images to cube maps and performing perspective image calibration, we treat 360-degree images as a whole sphere and derive a mathematical framework that enables direct omnidirectional camera pose calibration accompanied by 3D Gaussians optimization. Furthermore, we introduce a differentiable omnidirectional camera model in order to rectify the distortion of real-world data for performance enhancement. Overall, the omnidirectional camera intrinsic model, extrinsic poses, and 3D Gaussians are jointly optimized by minimizing weighted spherical photometric loss. Extensive experiments have demonstrated that our proposed SC-OmniGS is able to recover a high-quality radiance field from noisy camera poses or even no pose prior in challenging scenarios characterized by wide baselines and non-object-centric configurations. The noticeable performance gain in the real-world dataset captured by consumer-grade omnidirectional cameras verifies the effectiveness of our general omnidirectional camera model in reducing the distortion of 360-degree images.
February 2025. https://arxiv.org/abs/2502.04734
109 High-Speed Dynamic 3D Imaging with Sensor Fusion Splatting Zihao Zou,Ziyuan Qu,Xi Peng,Vivek Boominathan,Adithya Pediredla,Praneeth Chakravarthula
AbstractCapturing and reconstructing high-speed dynamic 3D scenes has numerous applications in computer graphics, vision, and interdisciplinary fields such as robotics, aerodynamics, and evolutionary biology. However, achieving this using a single imaging modality remains challenging. For instance, traditional RGB cameras suffer from low frame rates, limited exposure times, and narrow baselines. To address this, we propose a novel sensor fusion approach using Gaussian splatting, which combines RGB, depth, and event cameras to capture and reconstruct deforming scenes at high speeds. The key insight of our method lies in leveraging the complementary strengths of these imaging modalities: RGB cameras capture detailed color information, event cameras record rapid scene changes with microsecond resolution, and depth cameras provide 3D scene geometry. To unify the underlying scene representation across these modalities, we represent the scene using deformable 3D Gaussians. To handle rapid scene movements, we jointly optimize the 3D Gaussian parameters and their temporal deformation fields by integrating data from all three sensor modalities. This fusion enables efficient, high-quality imaging of fast and complex scenes, even under challenging conditions such as low light, narrow baselines, or rapid motion. Experiments on synthetic and real datasets captured with our prototype sensor fusion setup demonstrate that our method significantly outperforms state-of-the-art techniques, achieving noticeable improvements in both rendering fidelity and structural accuracy.
February 2025. https://arxiv.org/abs/2502.04630
108 GP-GS: Gaussian Processes for Enhanced Gaussian Splatting Zhihao Guo,Jingxuan Su,Shenglin Wang,Jinlong Fan,Jing Zhang,Liangxiu Han,Peng Wang
Abstract3D Gaussian Splatting has emerged as an efficient photorealistic novel view synthesis method. However, its reliance on sparse Structure-from-Motion (SfM) point clouds consistently compromises the scene reconstruction quality. To address these limitations, this paper proposes a novel 3D reconstruction framework Gaussian Processes Gaussian Splatting (GP-GS), where a multi-output Gaussian Process model is developed to achieve adaptive and uncertainty-guided densification of sparse SfM point clouds. Specifically, we propose a dynamic sampling and filtering pipeline that adaptively expands the SfM point clouds by leveraging GP-based predictions to infer new candidate points from the input 2D pixels and depth maps. The pipeline utilizes uncertainty estimates to guide the pruning of high-variance predictions, ensuring geometric consistency and enabling the generation of dense point clouds. The densified point clouds provide high-quality initial 3D Gaussians to enhance reconstruction performance. Extensive experiments conducted on synthetic and real-world datasets across various scales validate the effectiveness and practicality of the proposed framework.
February 2025. https://arxiv.org/abs/2502.02283
107 Segment Any 3D Gaussians Jiazhong Cen,Jiemin Fang,Chen Yang,Lingxi Xie,Xiaopeng Zhang,Wei Shen,Qi Tian
AbstractThis paper presents SAGA (Segment Any 3D GAussians), a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS). Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms. This is achieved by attaching an scale-gated affinity feature to each 3D Gaussian to endow it a new property towards multi-granularity segmentation. Specifically, a scale-aware contrastive training strategy is proposed for the scale-gated affinity feature learning. It 1) distills the segmentation capability of the Segment Anything Model (SAM) from 2D masks into the affinity features and 2) employs a soft scale gate mechanism to deal with multi-granularity ambiguity in 3D segmentation through adjusting the magnitude of each feature channel according to a specified 3D physical scale. Evaluations demonstrate that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods. As one of the first methods addressing promptable segmentation in 3D-GS, the simplicity and effectiveness of SAGA pave the way for future advancements in this field. Our code will be released.
December 2023. https://arxiv.org/abs/2312.00860
106 GS-CPR: Efficient Camera Pose Refinement via 3D Gaussian Splatting Changkun Liu,Shuai Chen,Yash Bhalgat,Siyan Hu,Ming Cheng,Zirui Wang,Victor Adrian Prisacariu,Tristan Braud
AbstractWe leverage 3D Gaussian Splatting (3DGS) as a scene representation and propose a novel test-time camera pose refinement (CPR) framework, GS-CPR. This framework enhances the localization accuracy of state-of-the-art absolute pose regression and scene coordinate regression methods. The 3DGS model renders high-quality synthetic images and depth maps to facilitate the establishment of 2D-3D correspondences. GS-CPR obviates the need for training feature extractors or descriptors by operating directly on RGB images, utilizing the 3D foundation model, MASt3R, for precise 2D matching. To improve the robustness of our model in challenging outdoor environments, we incorporate an exposure-adaptive module within the 3DGS framework. Consequently, GS-CPR enables efficient one-shot pose refinement given a single RGB query and a coarse initial pose estimation. Our proposed approach surpasses leading NeRF-based optimization methods in both accuracy and runtime across indoor and outdoor visual localization benchmarks, achieving new state-of-the-art accuracy on two indoor datasets. The project page is available at https://gsloc.active.vision.
August 2024. https://arxiv.org/abs/2408.11085
105 GS-LiDAR: Generating Realistic LiDAR Point Clouds with Panoramic Gaussian Splatting Junzhe Jiang,Chun Gu,Yurui Chen,Li Zhang
AbstractLiDAR novel view synthesis (NVS) has emerged as a novel task within LiDAR simulation, offering valuable simulated point cloud data from novel viewpoints to aid in autonomous driving systems. However, existing LiDAR NVS methods typically rely on neural radiance fields (NeRF) as their 3D representation, which incurs significant computational costs in both training and rendering. Moreover, NeRF and its variants are designed for symmetrical scenes, making them ill-suited for driving scenarios. To address these challenges, we propose GS-LiDAR, a novel framework for generating realistic LiDAR point clouds with panoramic Gaussian splatting. Our approach employs 2D Gaussian primitives with periodic vibration properties, allowing for precise geometric reconstruction of both static and dynamic elements in driving scenarios. We further introduce a novel panoramic rendering technique with explicit ray-splat intersection, guided by panoramic LiDAR supervision. By incorporating intensity and ray-drop spherical harmonic (SH) coefficients into the Gaussian primitives, we enhance the realism of the rendered point clouds. Extensive experiments on KITTI-360 and nuScenes demonstrate the superiority of our method in terms of quantitative metrics, visual quality, as well as training and rendering efficiency.
January 2025. https://arxiv.org/abs/2501.13971
104 RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis Hugo Blanc,Jean-Emmanuel Deschaud,Alexis Paljic
AbstractDifferentiable volumetric rendering-based methods made significant progress in novel view synthesis. On one hand, innovative methods have replaced the Neural Radiance Fields (NeRF) network with locally parameterized structures, enabling high-quality renderings in a reasonable time. On the other hand, approaches have used differentiable splatting instead of NeRF's ray casting to optimize radiance fields rapidly using Gaussian kernels, allowing for fine adaptation to the scene. However, differentiable ray casting of irregularly spaced kernels has been scarcely explored, while splatting, despite enabling fast rendering times, is susceptible to clearly visible artifacts. Our work closes this gap by providing a physically consistent formulation of the emitted radiance c and density \xcf\x83, decomposed with Gaussian functions associated with Spherical Gaussians/Harmonics for all-frequency colorimetric representation. We also introduce a method enabling differentiable ray casting of irregularly distributed Gaussians using an algorithm that integrates radiance fields slab by slab and leverages a BVH structure. This allows our approach to finely adapt to the scene while avoiding splatting artifacts. As a result, we achieve superior rendering quality compared to the state-of-the-art while maintaining reasonable training times and achieving inference speeds of 25 FPS on the Blender dataset. Project page with videos and code: https://raygauss.github.io/
August 2024. https://arxiv.org/abs/2408.03356
103 GaussNav: Gaussian Splatting for Visual Navigation Xiaohan Lei,Min Wang,Wengang Zhou,Houqiang Li
AbstractIn embodied vision, Instance ImageGoal Navigation (IIN) requires an agent to locate a specific object depicted in a goal image within an unexplored environment. The primary challenge of IIN arises from the need to recognize the target object across varying viewpoints while ignoring potential distractors. Existing map-based navigation methods typically use Bird's Eye View (BEV) maps, which lack detailed texture representation of a scene. Consequently, while BEV maps are effective for semantic-level visual navigation, they are struggling for instance-level tasks. To this end, we propose a new framework for IIN, Gaussian Splatting for Visual Navigation (GaussNav), which constructs a novel map representation based on 3D Gaussian Splatting (3DGS). The GaussNav framework enables the agent to memorize both the geometry and semantic information of the scene, as well as retain the textural features of objects. By matching renderings of similar objects with the target, the agent can accurately identify, ground, and navigate to the specified object. Our GaussNav framework demonstrates a significant performance improvement, with Success weighted by Path Length (SPL) increasing from 0.347 to 0.578 on the challenging Habitat-Matterport 3D (HM3D) dataset. The source code is publicly available at the link: https://github.com/XiaohanLei/GaussNav.
March 2024. https://arxiv.org/abs/2403.11625
102 LAYOUTDREAMER: Physics-guided Layout for Text-to-3D Compositional Scene Generation Yang Zhou,Zongjin He,Qixuan Li,Chao Wang
AbstractRecently, the field of text-guided 3D scene generation has garnered significant attention. High-quality generation that aligns with physical realism and high controllability is crucial for practical 3D scene applications. However, existing methods face fundamental limitations: (i) difficulty capturing complex relationships between multiple objects described in the text, (ii) inability to generate physically plausible scene layouts, and (iii) lack of controllability and extensibility in compositional scenes. In this paper, we introduce LayoutDreamer, a framework that leverages 3D Gaussian Splatting (3DGS) to facilitate high-quality, physically consistent compositional scene generation guided by text. Specifically, given a text prompt, we convert it into a directed scene graph and adaptively adjust the density and layout of the initial compositional 3D Gaussians. Subsequently, dynamic camera adjustments are made based on the training focal point to ensure entity-level generation quality. Finally, by extracting directed dependencies from the scene graph, we tailor physical and layout energy to ensure both realism and flexibility. Comprehensive experiments demonstrate that LayoutDreamer outperforms other compositional scene generation quality and semantic alignment methods. Specifically, it achieves state-of-the-art (SOTA) performance in the multiple objects generation metric of T3Bench.
February 2025. https://arxiv.org/abs/2502.01949
101 Scalable 3D Gaussian Splatting-Based RF Signal Spatial Propagation Modeling Kang Yang,Gaofeng Dong,Sijie Ji,Wan Du,Mani Srivastava
AbstractEffective network planning and sensing in wireless networks require resource-intensive site surveys for data collection. An alternative is Radio-Frequency (RF) signal spatial propagation modeling, which computes received signals given transceiver positions in a scene (e.g.s a conference room). We identify a fundamental trade-off between scalability and fidelity in the state-of-the-art method. To address this issue, we explore leveraging 3D Gaussian Splatting (3DGS), an advanced technique for the image synthesis of 3D scenes in real-time from arbitrary camera poses. By integrating domain-specific insights, we design three components for adapting 3DGS to the RF domain, including Gaussian-based RF scene representation, gradient-guided RF attribute learning, and RF-customized CUDA for ray tracing. Building on them, we develop RFSPM, an end-to-end framework for scalable RF signal Spatial Propagation Modeling. We evaluate RFSPM in four field studies and two applications across RFID, BLE, LoRa, and 5G, covering diverse frequencies, antennas, signals, and scenes. The results show that RFSPM matches the fidelity of the state-of-the-art method while reducing data requirements, training GPU-hours, and inference latency by up to 9.8\,$\times$, 18.6\,$\times$, and 84.4\,$\times$, respectively.
February 2025. https://arxiv.org/abs/2502.01826
100 VR-Robo: A Real-to-Sim-to-Real Framework for Visual Robot Navigation and Locomotion Shaoting Zhu,Linzhan Mou,Derun Li,Baijun Ye,Runhan Huang,Hang Zhao
AbstractRecent success in legged robot locomotion is attributed to the integration of reinforcement learning and physical simulators. However, these policies often encounter challenges when deployed in real-world environments due to sim-to-real gaps, as simulators typically fail to replicate visual realism and complex real-world geometry. Moreover, the lack of realistic visual rendering limits the ability of these policies to support high-level tasks requiring RGB-based perception like ego-centric navigation. This paper presents a Real-to-Sim-to-Real framework that generates photorealistic and physically interactive "digital twin" simulation environments for visual navigation and locomotion learning. Our approach leverages 3D Gaussian Splatting (3DGS) based scene reconstruction from multi-view images and integrates these environments into simulations that support ego-centric visual perception and mesh-based physical interactions. To demonstrate its effectiveness, we train a reinforcement learning policy within the simulator to perform a visual goal-tracking task. Extensive experiments show that our framework achieves RGB-only sim-to-real policy transfer. Additionally, our framework facilitates the rapid adaptation of robot policies with effective exploration capability in complex new environments, highlighting its potential for applications in households and factories.
February 2025. https://arxiv.org/abs/2502.01536
99 Reflective Gaussian Splatting Yuxuan Yao,Zixuan Zeng,Chun Gu,Xiatian Zhu,Li Zhang
AbstractNovel view synthesis has experienced significant advancements owing to increasingly capable NeRF- and 3DGS-based methods. However, reflective object reconstruction remains challenging, lacking a proper solution to achieve real-time, high-quality rendering while accommodating inter-reflection. To fill this gap, we introduce a Reflective Gaussian splatting (Ref-Gaussian) framework characterized with two components: (I) Physically based deferred rendering that empowers the rendering equation with pixel-level material properties via formulating split-sum approximation; (II) Gaussian-grounded inter-reflection that realizes the desired inter-reflection function within a Gaussian splatting paradigm for the first time. To enhance geometry modeling, we further introduce material-aware normal propagation and an initial per-Gaussian shading stage, along with 2D Gaussian primitives. Extensive experiments on standard datasets demonstrate that Ref-Gaussian surpasses existing approaches in terms of quantitative metrics, visual quality, and compute efficiency. Further, we show that our method serves as a unified solution for both reflective and non-reflective scenes, going beyond the previous alternatives focusing on only reflective scenes. Also, we illustrate that Ref-Gaussian supports more applications such as relighting and editing.
December 2024. https://arxiv.org/abs/2412.19282
98 CityLoc: 6DoF Pose Distributional Localization for Text Descriptions in Large-Scale Scenes with Gaussian Representation Qi Ma,Runyi Yang,Bin Ren,Nicu Sebe,Ender Konukoglu,Luc Van Gool,Danda Pani Paudel
AbstractLocalizing textual descriptions within large-scale 3D scenes presents inherent ambiguities, such as identifying all traffic lights in a city. Addressing this, we introduce a method to generate distributions of camera poses conditioned on textual descriptions, facilitating robust reasoning for broadly defined concepts. Our approach employs a diffusion-based architecture to refine noisy 6DoF camera poses towards plausible locations, with conditional signals derived from pre-trained text encoders. Integration with the pretrained Vision-Language Model, CLIP, establishes a strong linkage between text descriptions and pose distributions. Enhancement of localization accuracy is achieved by rendering candidate poses using 3D Gaussian splatting, which corrects misaligned samples through visual reasoning. We validate our method's superiority by comparing it against standard distribution estimation methods across five large-scale datasets, demonstrating consistent outperformance. Code, datasets and more information will be publicly available at our project page.
January 2025. https://arxiv.org/abs/2501.08982
97 Radiant Foam: Real-Time Differentiable Ray Tracing Shrisudhan Govindarajan,Daniel Rebain,Kwang Moo Yi,Andrea Tagliasacchi
AbstractResearch on differentiable scene representations is consistently moving towards more efficient, real-time models. Recently, this has led to the popularization of splatting methods, which eschew the traditional ray-based rendering of radiance fields in favor of rasterization. This has yielded a significant improvement in rendering speeds due to the efficiency of rasterization algorithms and hardware, but has come at a cost: the approximations that make rasterization efficient also make implementation of light transport phenomena like reflection and refraction much more difficult. We propose a novel scene representation which avoids these approximations, but keeps the efficiency and reconstruction quality of splatting by leveraging a decades-old efficient volumetric mesh ray tracing algorithm which has been largely overlooked in recent computer vision research. The resulting model, which we name Radiant Foam, achieves rendering speed and quality comparable to Gaussian Splatting, without the constraints of rasterization. Unlike ray traced Gaussian models that use hardware ray tracing acceleration, our method requires no special hardware or APIs beyond the standard features of a programmable GPU.
February 2025. https://arxiv.org/abs/2502.01157
96 CATSplat: Context-Aware Transformer with Spatial Guidance for Generalizable 3D Gaussian Splatting from A Single-View Image Wonseok Roh,Hwanhee Jung,Jong Wook Kim,Seunggwan Lee,Innfarn Yoo,Andreas Lugmayr,Seunggeun Chi,Karthik Ramani,Sangpil Kim
AbstractRecently, generalizable feed-forward methods based on 3D Gaussian Splatting have gained significant attention for their potential to reconstruct 3D scenes using finite resources. These approaches create a 3D radiance field, parameterized by per-pixel 3D Gaussian primitives, from just a few images in a single forward pass. However, unlike multi-view methods that benefit from cross-view correspondences, 3D scene reconstruction with a single-view image remains an underexplored area. In this work, we introduce CATSplat, a novel generalizable transformer-based framework designed to break through the inherent constraints in monocular settings. First, we propose leveraging textual guidance from a visual-language model to complement insufficient information from a single image. By incorporating scene-specific contextual details from text embeddings through cross-attention, we pave the way for context-aware 3D scene reconstruction beyond relying solely on visual cues. Moreover, we advocate utilizing spatial guidance from 3D point features toward comprehensive geometric understanding under single-view settings. With 3D priors, image features can capture rich structural insights for predicting 3D Gaussians without multi-view techniques. Extensive experiments on large-scale datasets demonstrate the state-of-the-art performance of CATSplat in single-view 3D scene reconstruction with high-quality novel view synthesis.
December 2024. https://arxiv.org/abs/2412.12906
95 Topology-Aware 3D Gaussian Splatting: Leveraging Persistent Homology for Optimized Structural Integrity Tianqi Shen,Shaohua Liu,Jiaqi Feng,Ziye Ma,Ning An
AbstractGaussian Splatting (GS) has emerged as a crucial technique for representing discrete volumetric radiance fields. It leverages unique parametrization to mitigate computational demands in scene optimization. This work introduces Topology-Aware 3D Gaussian Splatting (Topology-GS), which addresses two key limitations in current approaches: compromised pixel-level structural integrity due to incomplete initial geometric coverage, and inadequate feature-level integrity from insufficient topological constraints during optimization. To overcome these limitations, Topology-GS incorporates a novel interpolation strategy, Local Persistent Voronoi Interpolation (LPVI), and a topology-focused regularization term based on persistent barcodes, named PersLoss. LPVI utilizes persistent homology to guide adaptive interpolation, enhancing point coverage in low-curvature areas while preserving topological structure. PersLoss aligns the visual perceptual similarity of rendered images with ground truth by constraining distances between their topological features. Comprehensive experiments on three novel-view synthesis benchmarks demonstrate that Topology-GS outperforms existing methods in terms of PSNR, SSIM, and LPIPS metrics, while maintaining efficient memory usage. This study pioneers the integration of topology with 3D-GS, laying the groundwork for future research in this area.
December 2024. https://arxiv.org/abs/2412.16619
94 CULTURE3D: Cultural Landmarks and Terrain Dataset for 3D Applications Xinyi Zheng,Steve Zhang,Weizhe Lin,Aaron Zhang,Walterio W. Mayol-Cuevas,Junxiao Shen
AbstractIn this paper, we present a large-scale fine-grained dataset using high-resolution images captured from locations worldwide. Compared to existing datasets, our dataset offers a significantly larger size and includes a higher level of detail, making it uniquely suited for fine-grained 3D applications. Notably, our dataset is built using drone-captured aerial imagery, which provides a more accurate perspective for capturing real-world site layouts and architectural structures. By reconstructing environments with these detailed images, our dataset supports applications such as the COLMAP format for Gaussian Splatting and the Structure-from-Motion (SfM) method. It is compatible with widely-used techniques including SLAM, Multi-View Stereo, and Neural Radiance Fields (NeRF), enabling accurate 3D reconstructions and point clouds. This makes it a benchmark for reconstruction and segmentation tasks. The dataset enables seamless integration with multi-modal data, supporting a range of 3D applications, from architectural reconstruction to virtual tourism. Its flexibility promotes innovation, facilitating breakthroughs in 3D modeling and analysis.
January 2025. https://arxiv.org/abs/2501.06927
93 EmoTalkingGaussian: Continuous Emotion-conditioned Talking Head Synthesis Junuk Cha,Seongro Yoon,Valeriya Strizhkova,Francois Bremond,Seungryul Baek
Abstract3D Gaussian splatting-based talking head synthesis has recently gained attention for its ability to render high-fidelity images with real-time inference speed. However, since it is typically trained on only a short video that lacks the diversity in facial emotions, the resultant talking heads struggle to represent a wide range of emotions. To address this issue, we propose a lip-aligned emotional face generator and leverage it to train our EmoTalkingGaussian model. It is able to manipulate facial emotions conditioned on continuous emotion values (i.e., valence and arousal); while retaining synchronization of lip movements with input audio. Additionally, to achieve the accurate lip synchronization for in-the-wild audio, we introduce a self-supervised learning method that leverages a text-to-speech network and a visual-audio synchronization network. We experiment our EmoTalkingGaussian on publicly available videos and have obtained better results than state-of-the-arts in terms of image quality (measured in PSNR, SSIM, LPIPS), emotion expression (measured in V-RMSE, A-RMSE, V-SA, A-SA, Emotion Accuracy), and lip synchronization (measured in LMD, Sync-E, Sync-C), respectively.
February 2025. https://arxiv.org/abs/2502.00654
92 Gaussians on their Way: Wasserstein-Constrained 4D Gaussian Splatting with State-Space Modeling Junli Deng,Yihao Luo
AbstractDynamic scene rendering has taken a leap forward with the rise of 4D Gaussian Splatting, but there's still one elusive challenge: how to make 3D Gaussians move through time as naturally as they would in the real world, all while keeping the motion smooth and consistent. In this paper, we unveil a fresh approach that blends state-space modeling with Wasserstein geometry, paving the way for a more fluid and coherent representation of dynamic scenes. We introduce a State Consistency Filter that merges prior predictions with the current observations, enabling Gaussians to stay true to their way over time. We also employ Wasserstein distance regularization to ensure smooth, consistent updates of Gaussian parameters, reducing motion artifacts. Lastly, we leverage Wasserstein geometry to capture both translational motion and shape deformations, creating a more physically plausible model for dynamic scenes. Our approach guides Gaussians along their natural way in the Wasserstein space, achieving smoother, more realistic motion and stronger temporal coherence. Experimental results show significant improvements in rendering quality and efficiency, outperforming current state-of-the-art techniques.
December 2024. https://arxiv.org/abs/2412.00333
91 Gaussian Splatting Visual MPC for Granular Media Manipulation Wei-Cheng Tseng,Ellina Zhang,Krishna Murthy Jatavallabhula,Florian Shkurti
AbstractRecent advancements in learned 3D representations have enabled significant progress in solving complex robotic manipulation tasks, particularly for rigid-body objects. However, manipulating granular materials such as beans, nuts, and rice, remains challenging due to the intricate physics of particle interactions, high-dimensional and partially observable state, inability to visually track individual particles in a pile, and the computational demands of accurate dynamics prediction. Current deep latent dynamics models often struggle to generalize in granular material manipulation due to a lack of inductive biases. In this work, we propose a novel approach that learns a visual dynamics model over Gaussian splatting representations of scenes and leverages this model for manipulating granular media via Model-Predictive Control. Our method enables efficient optimization for complex manipulation tasks on piles of granular media. We evaluate our approach in both simulated and real-world settings, demonstrating its ability to solve unseen planning tasks and generalize to new environments in a zero-shot transfer. We also show significant prediction and manipulation performance improvements compared to existing granular media manipulation methods.
October 2024. https://arxiv.org/abs/2410.09740
90 Lifting by Gaussians: A Simple, Fast and Flexible Method for 3D Instance Segmentation Rohan Chacko,Nicolai Haeni,Eldar Khaliullin,Lin Sun,Douglas Lee
AbstractWe introduce Lifting By Gaussians (LBG), a novel approach for open-world instance segmentation of 3D Gaussian Splatted Radiance Fields (3DGS). Recently, 3DGS Fields have emerged as a highly efficient and explicit alternative to Neural Field-based methods for high-quality Novel View Synthesis. Our 3D instance segmentation method directly lifts 2D segmentation masks from SAM (alternately FastSAM, etc.), together with features from CLIP and DINOv2, directly fusing them onto 3DGS (or similar Gaussian radiance fields such as 2DGS). Unlike previous approaches, LBG requires no per-scene training, allowing it to operate seamlessly on any existing 3DGS reconstruction. Our approach is not only an order of magnitude faster and simpler than existing approaches; it is also highly modular, enabling 3D semantic segmentation of existing 3DGS fields without requiring a specific parametrization of the 3D Gaussians. Furthermore, our technique achieves superior semantic segmentation for 2D semantic novel view synthesis and 3D asset extraction results while maintaining flexibility and efficiency. We further introduce a novel approach to evaluate individually segmented 3D assets from 3D radiance field segmentation methods.
February 2025. https://arxiv.org/abs/2502.00173
89 Advancing Dense Endoscopic Reconstruction with Gaussian Splatting-driven Surface Normal-aware Tracking and Mapping Yiming Huang,Beilei Cui,Long Bai,Zhen Chen,Jinlin Wu,Zhen Li,Hongbin Liu,Hongliang Ren
AbstractSimultaneous Localization and Mapping (SLAM) is essential for precise surgical interventions and robotic tasks in minimally invasive procedures. While recent advancements in 3D Gaussian Splatting (3DGS) have improved SLAM with high-quality novel view synthesis and fast rendering, these systems struggle with accurate depth and surface reconstruction due to multi-view inconsistencies. Simply incorporating SLAM and 3DGS leads to mismatches between the reconstructed frames. In this work, we present Endo-2DTAM, a real-time endoscopic SLAM system with 2D Gaussian Splatting (2DGS) to address these challenges. Endo-2DTAM incorporates a surface normal-aware pipeline, which consists of tracking, mapping, and bundle adjustment modules for geometrically accurate reconstruction. Our robust tracking module combines point-to-point and point-to-plane distance metrics, while the mapping module utilizes normal consistency and depth distortion to enhance surface reconstruction quality. We also introduce a pose-consistent strategy for efficient and geometrically coherent keyframe sampling. Extensive experiments on public endoscopic datasets demonstrate that Endo-2DTAM achieves an RMSE of $1.87\pm 0.63$ mm for depth reconstruction of surgical scenes while maintaining computationally efficient tracking, high-quality visual appearance, and real-time rendering. Our code will be released at github.com/lastbasket/Endo-2DTAM.
January 2025. https://arxiv.org/abs/2501.19319
88 RaySplats: Ray Tracing based Gaussian Splatting Krzysztof Byrski,Marcin Mazur,Jacek Tabor,Tadeusz Dziarmaga,Marcin K\xc4\x85dzio\xc5\x82ka,Dawid Baran,Przemys\xc5\x82aw Spurek
Abstract3D Gaussian Splatting (3DGS) is a process that enables the direct creation of 3D objects from 2D images. This representation offers numerous advantages, including rapid training and rendering. However, a significant limitation of 3DGS is the challenge of incorporating light and shadow reflections, primarily due to the utilization of rasterization rather than ray tracing for rendering. This paper introduces RaySplats, a model that employs ray-tracing based Gaussian Splatting. Rather than utilizing the projection of Gaussians, our method employs a ray-tracing mechanism, operating directly on Gaussian primitives represented by confidence ellipses with RGB colors. In practice, we compute the intersection between ellipses and rays to construct ray-tracing algorithms, facilitating the incorporation of meshes with Gaussian Splatting models and the addition of lights, shadows, and other related effects.
January 2025. https://arxiv.org/abs/2501.19196
87 VoD-3DGS: View-opacity-Dependent 3D Gaussian Splatting Mateusz Nowak,Wojciech Jarosz,Peter Chin
AbstractReconstructing a 3D scene from images is challenging due to the different ways light interacts with surfaces depending on the viewer's position and the surface's material. In classical computer graphics, materials can be classified as diffuse or specular, interacting with light differently. The standard 3D Gaussian Splatting model struggles to represent view-dependent content, since it cannot differentiate an object within the scene from the light interacting with its specular surfaces, which produce highlights or reflections. In this paper, we propose to extend the 3D Gaussian Splatting model by introducing an additional symmetric matrix to enhance the opacity representation of each 3D Gaussian. This improvement allows certain Gaussians to be suppressed based on the viewer's perspective, resulting in a more accurate representation of view-dependent reflections and specular highlights without compromising the scene's integrity. By allowing the opacity to be view dependent, our enhanced model achieves state-of-the-art performance on Mip-Nerf, Tanks&Temples, Deep Blending, and Nerf-Synthetic datasets without a significant loss in rendering speed, achieving >60FPS, and only incurring a minimal increase in memory used.
January 2025. https://arxiv.org/abs/2501.17978
86 JGHand: Joint-Driven Animatable Hand Avater via 3D Gaussian Splatting Zhoutao Sun,Xukun Shen,Yong Hu,Yuyou Zhong,Xueyang Zhou
AbstractSince hands are the primary interface in daily interactions, modeling high-quality digital human hands and rendering realistic images is a critical research problem. Furthermore, considering the requirements of interactive and rendering applications, it is essential to achieve real-time rendering and driveability of the digital model without compromising rendering quality. Thus, we propose Jointly 3D Gaussian Hand (JGHand), a novel joint-driven 3D Gaussian Splatting (3DGS)-based hand representation that renders high-fidelity hand images in real-time for various poses and characters. Distinct from existing articulated neural rendering techniques, we introduce a differentiable process for spatial transformations based on 3D key points. This process supports deformations from the canonical template to a mesh with arbitrary bone lengths and poses. Additionally, we propose a real-time shadow simulation method based on per-pixel depth to simulate self-occlusion shadows caused by finger movements. Finally, we embed the hand prior and propose an animatable 3DGS representation of the hand driven solely by 3D key points. We validate the effectiveness of each component of our approach through comprehensive ablation studies. Experimental results on public datasets demonstrate that JGHand achieves real-time rendering speeds with enhanced quality, surpassing state-of-the-art methods.
January 2025. https://arxiv.org/abs/2501.19088
85 GEVO: Memory-Efficient Monocular Visual Odometry Using Gaussians Dasong Gao,Peter Zhi Xuan Li,Vivienne Sze,Sertac Karaman
AbstractConstructing a high-fidelity representation of the 3D scene using a monocular camera can enable a wide range of applications on mobile devices, such as micro-robots, smartphones, and AR/VR headsets. On these devices, memory is often limited in capacity and its access often dominates the consumption of compute energy. Although Gaussian Splatting (GS) allows for high-fidelity reconstruction of 3D scenes, current GS-based SLAM is not memory efficient as a large number of past images is stored to retrain Gaussians for reducing catastrophic forgetting. These images often require two-orders-of-magnitude higher memory than the map itself and thus dominate the total memory usage. In this work, we present GEVO, a GS-based monocular SLAM framework that achieves comparable fidelity as prior methods by rendering (instead of storing) them from the existing map. Novel Gaussian initialization and optimization techniques are proposed to remove artifacts from the map and delay the degradation of the rendered images over time. Across a variety of environments, GEVO achieves comparable map fidelity while reducing the memory overhead to around 58 MBs, which is up to 94x lower than prior works.
September 2024. https://arxiv.org/abs/2409.09295
84 CrowdSplat: Exploring Gaussian Splatting For Crowd Rendering Xiaohan Sun,Yinghan Xu,John Dingliana,Carol O'Sullivan
AbstractWe present CrowdSplat, a novel approach that leverages 3D Gaussian Splatting for real-time, high-quality crowd rendering. Our method utilizes 3D Gaussian functions to represent animated human characters in diverse poses and outfits, which are extracted from monocular videos. We integrate Level of Detail (LoD) rendering to optimize computational efficiency and quality. The CrowdSplat framework consists of two stages: (1) avatar reconstruction and (2) crowd synthesis. The framework is also optimized for GPU memory usage to enhance scalability. Quantitative and qualitative evaluations show that CrowdSplat achieves good levels of rendering quality, memory efficiency, and computational performance. Through these experiments, we demonstrate that CrowdSplat is a viable solution for dynamic, realistic crowd simulation in real-time applications.
January 2025. https://arxiv.org/abs/2501.17792
83 FeatureGS: Eigenvalue-Feature Optimization in 3D Gaussian Splatting for Geometrically Accurate and Artifact-Reduced Reconstruction Miriam J\xc3\xa4ger,Markus Hillemann,Boris Jutzi
Abstract3D Gaussian Splatting (3DGS) has emerged as a powerful approach for 3D scene reconstruction using 3D Gaussians. However, neither the centers nor surfaces of the Gaussians are accurately aligned to the object surface, complicating their direct use in point cloud and mesh reconstruction. Additionally, 3DGS typically produces floater artifacts, increasing the number of Gaussians and storage requirements. To address these issues, we present FeatureGS, which incorporates an additional geometric loss term based on an eigenvalue-derived 3D shape feature into the optimization process of 3DGS. The goal is to improve geometric accuracy and enhance properties of planar surfaces with reduced structural entropy in local 3D neighborhoods.We present four alternative formulations for the geometric loss term based on 'planarity' of Gaussians, as well as 'planarity', 'omnivariance', and 'eigenentropy' of Gaussian neighborhoods. We provide quantitative and qualitative evaluations on 15 scenes of the DTU benchmark dataset focusing on following key aspects: Geometric accuracy and artifact-reduction, measured by the Chamfer distance, and memory efficiency, evaluated by the total number of Gaussians. Additionally, rendering quality is monitored by Peak Signal-to-Noise Ratio. FeatureGS achieves a 30 % improvement in geometric accuracy, reduces the number of Gaussians by 90 %, and suppresses floater artifacts, while maintaining comparable photometric rendering quality. The geometric loss with 'planarity' from Gaussians provides the highest geometric accuracy, while 'omnivariance' in Gaussian neighborhoods reduces floater artifacts and number of Gaussians the most. This makes FeatureGS a strong method for geometrically accurate, artifact-reduced and memory-efficient 3D scene reconstruction, enabling the direct use of Gaussian centers for geometric representation.
January 2025. https://arxiv.org/abs/2501.17655
82 LUDVIG: Learning-free Uplifting of 2D Visual features to Gaussian Splatting scenes Juliette Marrie,Romain Menegaux,Michael Arbel,Diane Larlus,Julien Mairal
AbstractWe address the problem of extending the capabilities of vision foundation models such as DINO, SAM, and CLIP, to 3D tasks. Specifically, we introduce a novel method to uplift 2D image features into Gaussian Splatting representations of 3D scenes. Unlike traditional approaches that rely on minimizing a reconstruction loss, our method employs a simpler and more efficient feature aggregation technique, augmented by a graph diffusion mechanism. Graph diffusion refines 3D features, such as coarse segmentation masks, by leveraging 3D geometry and pairwise similarities induced by DINOv2. Our approach achieves performance comparable to the state of the art on multiple downstream tasks while delivering significant speed-ups. Notably, we obtain competitive segmentation results using generic DINOv2 features, despite DINOv2 not being trained on millions of annotated segmentation masks like SAM. When applied to CLIP features, our method demonstrates strong performance in open-vocabulary object localization tasks, highlighting the versatility of our approach.
October 2024. https://arxiv.org/abs/2410.14462
81 Evaluating CrowdSplat: Perceived Level of Detail for Gaussian Crowds Xiaohan Sun,Yinghan Xu,John Dingliana,Carol O'Sullivan
AbstractEfficient and realistic crowd rendering is an important element of many real-time graphics applications such as Virtual Reality (VR) and games. To this end, Levels of Detail (LOD) avatar representations such as polygonal meshes, image-based impostors, and point clouds have been proposed and evaluated. More recently, 3D Gaussian Splatting has been explored as a potential method for real-time crowd rendering. In this paper, we present a two-alternative forced choice (2AFC) experiment that aims to determine the perceived quality of 3D Gaussian avatars. Three factors were explored: Motion, LOD (i.e., #Gaussians), and the avatar height in Pixels (corresponding to the viewing distance). Participants viewed pairs of animated 3D Gaussian avatars and were tasked with choosing the most detailed one. Our findings can inform the optimization of LOD strategies in Gaussian-based crowd rendering, thereby helping to achieve efficient rendering while maintaining visual quality in real-time applications.
January 2025. https://arxiv.org/abs/2501.17085
80 DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat Generation Chenguo Lin,Panwang Pan,Bangbang Yang,Zeming Li,Yadong Mu
AbstractRecent advancements in 3D content generation from text or a single image struggle with limited high-quality 3D datasets and inconsistency from 2D multi-view generation. We introduce DiffSplat, a novel 3D generative framework that natively generates 3D Gaussian splats by taming large-scale text-to-image diffusion models. It differs from previous 3D generative models by effectively utilizing web-scale 2D priors while maintaining 3D consistency in a unified model. To bootstrap the training, a lightweight reconstruction model is proposed to instantly produce multi-view Gaussian splat grids for scalable dataset curation. In conjunction with the regular diffusion loss on these grids, a 3D rendering loss is introduced to facilitate 3D coherence across arbitrary views. The compatibility with image diffusion models enables seamless adaptions of numerous techniques for image generation to the 3D realm. Extensive experiments reveal the superiority of DiffSplat in text- and image-conditioned generation tasks and downstream applications. Thorough ablation studies validate the efficacy of each critical design choice and provide insights into the underlying mechanism.
January 2025. https://arxiv.org/abs/2501.16764
79 Deformable Beta Splatting Rong Liu,Dylan Sun,Meida Chen,Yue Wang,Andrew Feng
Abstract3D Gaussian Splatting (3DGS) has advanced radiance field reconstruction by enabling real-time rendering. However, its reliance on Gaussian kernels for geometry and low-order Spherical Harmonics (SH) for color encoding limits its ability to capture complex geometries and diverse colors. We introduce Deformable Beta Splatting (DBS), a deformable and compact approach that enhances both geometry and color representation. DBS replaces Gaussian kernels with deformable Beta Kernels, which offer bounded support and adaptive frequency control to capture fine geometric details with higher fidelity while achieving better memory efficiency. In addition, we extended the Beta Kernel to color encoding, which facilitates improved representation of diffuse and specular components, yielding superior results compared to SH-based methods. Furthermore, Unlike prior densification techniques that depend on Gaussian properties, we mathematically prove that adjusting regularized opacity alone ensures distribution-preserved Markov chain Monte Carlo (MCMC), independent of the splatting kernel type. Experimental results demonstrate that DBS achieves state-of-the-art visual quality while utilizing only 45% of the parameters and rendering 1.5x faster than 3DGS-based methods. Notably, for the first time, splatting-based methods outperform state-of-the-art Neural Radiance Fields, highlighting the superior performance and efficiency of DBS for real-time radiance field rendering.
January 2025. https://arxiv.org/abs/2501.18630
78 PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering Junxi Jin,Xiulai Li,Haiping Huang,Lianjun Liu,Yujie Sun,Boyi Liu
AbstractRecently, 3D Gaussian Splatting (3D-GS) has achieved significant success in real-time, high-quality 3D scene rendering. However, it faces several challenges, including Gaussian redundancy, limited ability to capture view-dependent effects, and difficulties in handling complex lighting and specular reflections. Additionally, methods that use spherical harmonics for color representation often struggle to effectively capture specular highlights and anisotropic components, especially when modeling view-dependent colors under complex lighting conditions, leading to insufficient contrast and unnatural color saturation. To address these limitations, we introduce PEP-GS, a perceptually-enhanced framework that dynamically predicts Gaussian attributes, including opacity, color, and covariance. We replace traditional spherical harmonics with a Hierarchical Granular-Structural Attention mechanism, which enables more accurate modeling of complex view-dependent color effects and specular highlights. By employing a stable and interpretable framework for opacity and covariance estimation, PEP-GS avoids the removal of essential Gaussians prematurely, ensuring a more accurate scene representation. Furthermore, perceptual optimization is applied to the final rendered images, enhancing perceptual consistency across different views and ensuring high-quality renderings with improved texture fidelity and fine-scale detail preservation. Experimental results demonstrate that PEP-GS outperforms state-of-the-art methods, particularly in challenging scenarios involving view-dependent effects, specular reflections, and fine-scale details.
November 2024. https://arxiv.org/abs/2411.05731
77 3DGS$^2$: Near Second-order Converging 3D Gaussian Splatting Lei Lan,Tianjia Shao,Zixuan Lu,Yu Zhang,Chenfanfu Jiang,Yin Yang
Abstract3D Gaussian Splatting (3DGS) has emerged as a mainstream solution for novel view synthesis and 3D reconstruction. By explicitly encoding a 3D scene using a collection of Gaussian kernels, 3DGS achieves high-quality rendering with superior efficiency. As a learning-based approach, 3DGS training has been dealt with the standard stochastic gradient descent (SGD) method, which offers at most linear convergence. Consequently, training often requires tens of minutes, even with GPU acceleration. This paper introduces a (near) second-order convergent training algorithm for 3DGS, leveraging its unique properties. Our approach is inspired by two key observations. First, the attributes of a Gaussian kernel contribute independently to the image-space loss, which endorses isolated and local optimization algorithms. We exploit this by splitting the optimization at the level of individual kernel attributes, analytically constructing small-size Newton systems for each parameter group, and efficiently solving these systems on GPU threads. This achieves Newton-like convergence per training image without relying on the global Hessian. Second, kernels exhibit sparse and structured coupling across input images. This property allows us to effectively utilize spatial information to mitigate overshoot during stochastic training. Our method converges an order faster than standard GPU-based 3DGS training, requiring over $10\times$ fewer iterations while maintaining or surpassing the quality of the compared with the SGD-based 3DGS reconstructions.
January 2025. https://arxiv.org/abs/2501.13975
76 EasySplat: View-Adaptive Learning makes 3D Gaussian Splatting Easy Ao Gao,Luosong Guo,Tao Chen,Zhao Wang,Ying Tai,Jian Yang,Zhenyu Zhang
Abstract3D Gaussian Splatting (3DGS) techniques have achieved satisfactory 3D scene representation. Despite their impressive performance, they confront challenges due to the limitation of structure-from-motion (SfM) methods on acquiring accurate scene initialization, or the inefficiency of densification strategy. In this paper, we introduce a novel framework EasySplat to achieve high-quality 3DGS modeling. Instead of using SfM for scene initialization, we employ a novel method to release the power of large-scale pointmap approaches. Specifically, we propose an efficient grouping strategy based on view similarity, and use robust pointmap priors to obtain high-quality point clouds and camera poses for 3D scene initialization. After obtaining a reliable scene structure, we propose a novel densification approach that adaptively splits Gaussian primitives based on the average shape of neighboring Gaussian ellipsoids, utilizing KNN scheme. In this way, the proposed method tackles the limitation on initialization and optimization, leading to an efficient and accurate 3DGS modeling. Extensive experiments demonstrate that EasySplat outperforms the current state-of-the-art (SOTA) in handling novel view synthesis.
January 2025. https://arxiv.org/abs/2501.01003
75 Can Pose Transfer Models Generate Realistic Human Motion? Vaclav Knapp,Matyas Bohacek
AbstractRecent pose-transfer methods aim to generate temporally consistent and fully controllable videos of human action where the motion from a reference video is reenacted by a new identity. We evaluate three state-of-the-art pose-transfer methods -- AnimateAnyone, MagicAnimate, and ExAvatar -- by generating videos with actions and identities outside the training distribution and conducting a participant study about the quality of these videos. In a controlled environment of 20 distinct human actions, we find that participants, presented with the pose-transferred videos, correctly identify the desired action only 42.92% of the time. Moreover, the participants find the actions in the generated videos consistent with the reference (source) videos only 36.46% of the time. These results vary by method: participants find the splatting-based ExAvatar more consistent and photorealistic than the diffusion-based AnimateAnyone and MagicAnimate.
January 2025. https://arxiv.org/abs/2501.15648
74 GaussianToken: An Effective Image Tokenizer with 2D Gaussian Splatting Jiajun Dong,Chengkun Wang,Wenzhao Zheng,Lei Chen,Jiwen Lu,Yansong Tang
AbstractEffective image tokenization is crucial for both multi-modal understanding and generation tasks due to the necessity of the alignment with discrete text data. To this end, existing approaches utilize vector quantization (VQ) to project pixels onto a discrete codebook and reconstruct images from the discrete representation. However, compared with the continuous latent space, the limited discrete codebook space significantly restrict the representational ability of these image tokenizers. In this paper, we propose GaussianToken: An Effective Image Tokenizer with 2D Gaussian Splatting as a solution. We first represent the encoded samples as multiple flexible featured 2D Gaussians characterized by positions, rotation angles, scaling factors, and feature coefficients. We adopt the standard quantization for the Gaussian features and then concatenate the quantization results with the other intrinsic Gaussian parameters before the corresponding splatting operation and the subsequent decoding module. In general, GaussianToken integrates the local influence of 2D Gaussian distribution into the discrete space and thus enhances the representation capability of the image tokenizer. Competitive reconstruction performances on CIFAR, Mini-ImageNet, and ImageNet-1K demonstrate the effectiveness of our framework. Our code is available at: https://github.com/ChrisDong-THU/GaussianToken.
January 2025. https://arxiv.org/abs/2501.15619
73 VR-Doh: Hands-on 3D Modeling in Virtual Reality Zhaofeng Luo,Zhitong Cui,Shijian Luo,Mengyu Chu,Minchen Li
AbstractWe introduce VR-Doh, a hands-on 3D modeling system that enables intuitive creation and manipulation of elastoplastic objects in Virtual Reality (VR). By customizing the Material Point Method (MPM) for real-time simulation of hand-induced large deformations and enhancing 3D Gaussian Splatting for seamless rendering, VR-Doh provides an interactive and immersive 3D modeling experience. Users can naturally sculpt, deform, and edit objects through both contact- and gesture-based hand-object interactions. To achieve real-time performance, our system incorporates localized simulation techniques, particle-level collision handling, and the decoupling of physical and appearance representations, ensuring smooth and responsive interactions. VR-Doh supports both object creation and editing, enabling diverse modeling tasks such as designing food items, characters, and interlocking structures, all resulting in simulation-ready assets. User studies with both novice and experienced participants highlights the system's intuitive design, immersive feedback, and creative potential. Compared to existing geometric modeling tools, VR-Doh offers enhanced accessibility and natural interaction, making it a powerful tool for creative exploration in VR.
December 2024. https://arxiv.org/abs/2412.00814
72 Towards Better Robustness: Progressively Joint Pose-3DGS Learning for Arbitrarily Long Videos Zhen-Hui Dong,Sheng Ye,Yu-Hui Wen,Nannan Li,Yong-Jin Liu
Abstract3D Gaussian Splatting (3DGS) has emerged as a powerful representation due to its efficiency and high-fidelity rendering. However, 3DGS training requires a known camera pose for each input view, typically obtained by Structure-from-Motion (SfM) pipelines. Pioneering works have attempted to relax this restriction but still face difficulties when handling long sequences with complex camera trajectories. In this work, we propose Rob-GS, a robust framework to progressively estimate camera poses and optimize 3DGS for arbitrarily long video sequences. Leveraging the inherent continuity of videos, we design an adjacent pose tracking method to ensure stable pose estimation between consecutive frames. To handle arbitrarily long inputs, we adopt a "divide and conquer" scheme that adaptively splits the video sequence into several segments and optimizes them separately. Extensive experiments on the Tanks and Temples dataset and our collected real-world dataset show that our Rob-GS outperforms the state-of-the-arts.
January 2025. https://arxiv.org/abs/2501.15096
71 HuGDiffusion: Generalizable Single-Image Human Rendering via 3D Gaussian Diffusion Yingzhi Tang,Qijian Zhang,Junhui Hou
AbstractWe present HuGDiffusion, a generalizable 3D Gaussian splatting (3DGS) learning pipeline to achieve novel view synthesis (NVS) of human characters from single-view input images. Existing approaches typically require monocular videos or calibrated multi-view images as inputs, whose applicability could be weakened in real-world scenarios with arbitrary and/or unknown camera poses. In this paper, we aim to generate the set of 3DGS attributes via a diffusion-based framework conditioned on human priors extracted from a single image. Specifically, we begin with carefully integrated human-centric feature extraction procedures to deduce informative conditioning signals. Based on our empirical observations that jointly learning the whole 3DGS attributes is challenging to optimize, we design a multi-stage generation strategy to obtain different types of 3DGS attributes. To facilitate the training process, we investigate constructing proxy ground-truth 3D Gaussian attributes as high-quality attribute-level supervision signals. Through extensive experiments, our HuGDiffusion shows significant performance improvements over the state-of-the-art methods. Our code will be made publicly available.
January 2025. https://arxiv.org/abs/2501.15008
70 Trick-GS: A Balanced Bag of Tricks for Efficient Gaussian Splatting Anil Armagan,Albert Sa\xc3\xa0-Garriga,Bruno Manganelli,Mateusz Nowak,Mehmet Kerim Yucel
AbstractGaussian splatting (GS) for 3D reconstruction has become quite popular due to their fast training, inference speeds and high quality reconstruction. However, GS-based reconstructions generally consist of millions of Gaussians, which makes them hard to use on computationally constrained devices such as smartphones. In this paper, we first propose a principled analysis of advances in efficient GS methods. Then, we propose Trick-GS, which is a careful combination of several strategies including (1) progressive training with resolution, noise and Gaussian scales, (2) learning to prune and mask primitives and SH bands by their significance, and (3) accelerated GS training framework. Trick-GS takes a large step towards resource-constrained GS, where faster run-time, smaller and faster-convergence of models is of paramount concern. Our results on three datasets show that Trick-GS achieves up to 2x faster training, 40x smaller disk size and 2x faster rendering speed compared to vanilla GS, while having comparable accuracy.
January 2025. https://arxiv.org/abs/2501.14534
69 Scalable Benchmarking and Robust Learning for Noise-Free Ego-Motion and 3D Reconstruction from Noisy Video Xiaohao Xu,Tianyi Zhang,Shibo Zhao,Xiang Li,Sibo Wang,Yongqi Chen,Ye Li,Bhiksha Raj,Matthew Johnson-Roberson,Sebastian Scherer,Xiaonan Huang
AbstractWe aim to redefine robust ego-motion estimation and photorealistic 3D reconstruction by addressing a critical limitation: the reliance on noise-free data in existing models. While such sanitized conditions simplify evaluation, they fail to capture the unpredictable, noisy complexities of real-world environments. Dynamic motion, sensor imperfections, and synchronization perturbations lead to sharp performance declines when these models are deployed in practice, revealing an urgent need for frameworks that embrace and excel under real-world noise. To bridge this gap, we tackle three core challenges: scalable data generation, comprehensive benchmarking, and model robustness enhancement. First, we introduce a scalable noisy data synthesis pipeline that generates diverse datasets simulating complex motion, sensor imperfections, and synchronization errors. Second, we leverage this pipeline to create Robust-Ego3D, a benchmark rigorously designed to expose noise-induced performance degradation, highlighting the limitations of current learning-based methods in ego-motion accuracy and 3D reconstruction quality. Third, we propose Correspondence-guided Gaussian Splatting (CorrGS), a novel test-time adaptation method that progressively refines an internal clean 3D representation by aligning noisy observations with rendered RGB-D frames from clean 3D map, enhancing geometric alignment and appearance restoration through visual correspondence. Extensive experiments on synthetic and real-world data demonstrate that CorrGS consistently outperforms prior state-of-the-art methods, particularly in scenarios involving rapid motion and dynamic illumination.
January 2025. https://arxiv.org/abs/2501.14319
68 ComPC: Completing a 3D Point Cloud with 2D Diffusion Priors Tianxin Huang,Zhiwen Yan,Yuyang Zhao,Gim Hee Lee
Abstract3D point clouds directly collected from objects through sensors are often incomplete due to self-occlusion. Conventional methods for completing these partial point clouds rely on manually organized training sets and are usually limited to object categories seen during training. In this work, we propose a test-time framework for completing partial point clouds across unseen categories without any requirement for training. Leveraging point rendering via Gaussian Splatting, we develop techniques of Partial Gaussian Initialization, Zero-shot Fractal Completion, and Point Cloud Extraction that utilize priors from pre-trained 2D diffusion models to infer missing regions and extract uniform completed point clouds. Experimental results on both synthetic and real-world scanned point clouds demonstrate that our approach outperforms existing methods in completing a variety of objects. Our project page is at \url{https://tianxinhuang.github.io/projects/ComPC/}.
April 2024. https://arxiv.org/abs/2404.06814
67 Dense-SfM: Structure from Motion with Dense Consistent Matching JongMin Lee,Sungjoo Yoo
AbstractWe present Dense-SfM, a novel Structure from Motion (SfM) framework designed for dense and accurate 3D reconstruction from multi-view images. Sparse keypoint matching, which traditional SfM methods often rely on, limits both accuracy and point density, especially in texture-less areas. Dense-SfM addresses this limitation by integrating dense matching with a Gaussian Splatting (GS) based track extension which gives more consistent, longer feature tracks. To further improve reconstruction accuracy, Dense-SfM is equipped with a multi-view kernelized matching module leveraging transformer and Gaussian Process architectures, for robust track refinement across multi-views. Evaluations on the ETH3D and Texture-Poor SfM datasets show that Dense-SfM offers significant improvements in accuracy and density over state-of-the-art methods.
January 2025. https://arxiv.org/abs/2501.14277
66 Micro-macro Wavelet-based Gaussian Splatting for 3D Reconstruction from Unconstrained Images Yihui Li,Chengxin Lv,Hongyu Yang,Di Huang
Abstract3D reconstruction from unconstrained image collections presents substantial challenges due to varying appearances and transient occlusions. In this paper, we introduce Micro-macro Wavelet-based Gaussian Splatting (MW-GS), a novel approach designed to enhance 3D reconstruction by disentangling scene representations into global, refined, and intrinsic components. The proposed method features two key innovations: Micro-macro Projection, which allows Gaussian points to capture details from feature maps across multiple scales with enhanced diversity; and Wavelet-based Sampling, which leverages frequency domain information to refine feature representations and significantly improve the modeling of scene appearances. Additionally, we incorporate a Hierarchical Residual Fusion Network to seamlessly integrate these features. Extensive experiments demonstrate that MW-GS delivers state-of-the-art rendering performance, surpassing existing methods.
January 2025. https://arxiv.org/abs/2501.14231
65 HAMMER: Heterogeneous, Multi-Robot Semantic Gaussian Splatting Javier Yu,Timothy Chen,Mac Schwager
Abstract3D Gaussian Splatting offers expressive scene reconstruction, modeling a broad range of visual, geometric, and semantic information. However, efficient real-time map reconstruction with data streamed from multiple robots and devices remains a challenge. To that end, we propose HAMMER, a server-based collaborative Gaussian Splatting method that leverages widely available ROS communication infrastructure to generate 3D, metric-semantic maps from asynchronous robot data-streams with no prior knowledge of initial robot positions and varying on-device pose estimators. HAMMER consists of (i) a frame alignment module that transforms local SLAM poses and image data into a global frame and requires no prior relative pose knowledge, and (ii) an online module for training semantic 3DGS maps from streaming data. HAMMER handles mixed perception modes, adjusts automatically for variations in image pre-processing among different devices, and distills CLIP semantic codes into the 3D scene for open-vocabulary language queries. In our real-world experiments, HAMMER creates higher-fidelity maps (2x) compared to competing baselines and is useful for downstream tasks, such as semantic goal-conditioned navigation (e.g., ``go to the couch"). Accompanying content available at hammer-project.github.io.
January 2025. https://arxiv.org/abs/2501.14147
64 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Xiaoyang Lyu,Yang-Tian Sun,Yi-Hua Huang,Xiuzhe Wu,Ziyi Yang,Yilun Chen,Jiangmiao Pang,Xiaojuan Qi
AbstractIn this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR, that allows for accurate 3D reconstruction with intricate details while inheriting the high efficiency and rendering quality of 3DGS. The key insight is incorporating an implicit signed distance field (SDF) within 3D Gaussians to enable them to be aligned and jointly optimized. First, we introduce a differentiable SDF-to-opacity transformation function that converts SDF values into corresponding Gaussians' opacities. This function connects the SDF and 3D Gaussians, allowing for unified optimization and enforcing surface constraints on the 3D Gaussians. During learning, optimizing the 3D Gaussians provides supervisory signals for SDF learning, enabling the reconstruction of intricate details. However, this only provides sparse supervisory signals to the SDF at locations occupied by Gaussians, which is insufficient for learning a continuous SDF. Then, to address this limitation, we incorporate volumetric rendering and align the rendered geometric attributes (depth, normal) with those derived from 3D Gaussians. This consistency regularization introduces supervisory signals to locations not covered by discrete 3D Gaussians, effectively eliminating redundant surfaces outside the Gaussian sampling range. Our extensive experimental results demonstrate that our 3DGSR method enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS. Besides, our method competes favorably with leading surface reconstruction techniques while offering a more efficient learning process and much better rendering qualities. The code will be available at https://github.com/CVMI-Lab/3DGSR.
April 2024. https://arxiv.org/abs/2404.00409
63 GoDe: Gaussians on Demand for Progressive Level of Detail and Scalable Compression Francesco Di Sario,Riccardo Renzulli,Marco Grangetto,Akihiro Sugimoto,Enzo Tartaglione
Abstract3D Gaussian Splatting enhances real-time performance in novel view synthesis by representing scenes with mixtures of Gaussians and utilizing differentiable rasterization. However, it typically requires large storage capacity and high VRAM, demanding the design of effective pruning and compression techniques. Existing methods, while effective in some scenarios, struggle with scalability and fail to adapt models based on critical factors such as computing capabilities or bandwidth, requiring to re-train the model under different configurations. In this work, we propose a novel, model-agnostic technique that organizes Gaussians into several hierarchical layers, enabling progressive Level of Detail (LoD) strategy. This method, combined with recent approach of compression of 3DGS, allows a single model to instantly scale across several compression ratios, with minimal to none impact to quality compared to a single non-scalable model and without requiring re-training. We validate our approach on typical datasets and benchmarks, showcasing low distortion and substantial gains in terms of scalability and adaptability.
January 2025. https://arxiv.org/abs/2501.13558
62 MultiDreamer3D: Multi-concept 3D Customization with Concept-Aware Diffusion Guidance Wooseok Song,Seunggyu Chang,Jaejun Yoo
AbstractWhile single-concept customization has been studied in 3D, multi-concept customization remains largely unexplored. To address this, we propose MultiDreamer3D that can generate coherent multi-concept 3D content in a divide-and-conquer manner. First, we generate 3D bounding boxes using an LLM-based layout controller. Next, a selective point cloud generator creates coarse point clouds for each concept. These point clouds are placed in the 3D bounding boxes and initialized into 3D Gaussian Splatting with concept labels, enabling precise identification of concept attributions in 2D projections. Finally, we refine 3D Gaussians via concept-aware interval score matching, guided by concept-aware diffusion. Our experimental results show that MultiDreamer3D not only ensures object presence and preserves the distinct identities of each concept but also successfully handles complex cases such as property change or interaction. To the best of our knowledge, we are the first to address the multi-concept customization in 3D.
January 2025. https://arxiv.org/abs/2501.13449
61 GeomGS: LiDAR-Guided Geometry-Aware Gaussian Splatting for Robot Localization Jaewon Lee,Mangyu Kong,Minseong Park,Euntai Kim
AbstractMapping and localization are crucial problems in robotics and autonomous driving. Recent advances in 3D Gaussian Splatting (3DGS) have enabled precise 3D mapping and scene understanding by rendering photo-realistic images. However, existing 3DGS methods often struggle to accurately reconstruct a 3D map that reflects the actual scale and geometry of the real world, which degrades localization performance. To address these limitations, we propose a novel 3DGS method called Geometry-Aware Gaussian Splatting (GeomGS). This method fully integrates LiDAR data into 3D Gaussian primitives via a probabilistic approach, as opposed to approaches that only use LiDAR as initial points or introduce simple constraints for Gaussian points. To this end, we introduce a Geometric Confidence Score (GCS), which identifies the structural reliability of each Gaussian point. The GCS is optimized simultaneously with Gaussians under probabilistic distance constraints to construct a precise structure. Furthermore, we propose a novel localization method that fully utilizes both the geometric and photometric properties of GeomGS. Our GeomGS demonstrates state-of-the-art geometric and localization performance across several benchmarks, while also improving photometric performance.
January 2025. https://arxiv.org/abs/2501.13417
60 VIGS SLAM: IMU-based Large-Scale 3D Gaussian Splatting SLAM Gyuhyeon Pak,Euntai Kim
AbstractRecently, map representations based on radiance fields such as 3D Gaussian Splatting and NeRF, which excellent for realistic depiction, have attracted considerable attention, leading to attempts to combine them with SLAM. While these approaches can build highly realistic maps, large-scale SLAM still remains a challenge because they require a large number of Gaussian images for mapping and adjacent images as keyframes for tracking. We propose a novel 3D Gaussian Splatting SLAM method, VIGS SLAM, that utilizes sensor fusion of RGB-D and IMU sensors for large-scale indoor environments. To reduce the computational load of 3DGS-based tracking, we adopt an ICP-based tracking framework that combines IMU preintegration to provide a good initial guess for accurate pose estimation. Our proposed method is the first to propose that Gaussian Splatting-based SLAM can be effectively performed in large-scale environments by integrating IMU sensor measurements. This proposal not only enhances the performance of Gaussian Splatting SLAM beyond room-scale scenarios but also achieves SLAM performance comparable to state-of-the-art methods in large-scale indoor environments.
January 2025. https://arxiv.org/abs/2501.13402
59 Deblur-Avatar: Animatable Avatars from Motion-Blurred Monocular Videos Xianrui Luo,Juewen Peng,Zhongang Cai,Lei Yang,Fan Yang,Zhiguo Cao,Guosheng Lin
AbstractWe introduce Deblur-Avatar, a novel framework for modeling high-fidelity, animatable 3D human avatars from motion-blurred monocular video inputs. Motion blur is prevalent in real-world dynamic video capture, especially due to human movements in 3D human avatar modeling. Existing methods either (1) assume sharp image inputs, failing to address the detail loss introduced by motion blur, or (2) mainly consider blur by camera movements, neglecting the human motion blur which is more common in animatable avatars. Our proposed approach integrates a human movement-based motion blur model into 3D Gaussian Splatting (3DGS). By explicitly modeling human motion trajectories during exposure time, we jointly optimize the trajectories and 3D Gaussians to reconstruct sharp, high-quality human avatars. We employ a pose-dependent fusion mechanism to distinguish moving body regions, optimizing both blurred and sharp areas effectively. Extensive experiments on synthetic and real-world datasets demonstrate that Deblur-Avatar significantly outperforms existing methods in rendering quality and quantitative metrics, producing sharp avatar reconstructions and enabling real-time rendering under challenging motion blur conditions.
January 2025. https://arxiv.org/abs/2501.13335
58 Sketch and Patch: Efficient 3D Gaussian Representation for Man-Made Scenes Yuang Shi,Simone Gasparini,G\xc3\xa9raldine Morin,Chenggang Yang,Wei Tsang Ooi
Abstract3D Gaussian Splatting (3DGS) has emerged as a promising representation for photorealistic rendering of 3D scenes. However, its high storage requirements pose significant challenges for practical applications. We observe that Gaussians exhibit distinct roles and characteristics that are analogous to traditional artistic techniques -- Like how artists first sketch outlines before filling in broader areas with color, some Gaussians capture high-frequency features like edges and contours; While other Gaussians represent broader, smoother regions, that are analogous to broader brush strokes that add volume and depth to a painting. Based on this observation, we propose a novel hybrid representation that categorizes Gaussians into (i) Sketch Gaussians, which define scene boundaries, and (ii) Patch Gaussians, which cover smooth regions. Sketch Gaussians are efficiently encoded using parametric models, leveraging their geometric coherence, while Patch Gaussians undergo optimized pruning, retraining, and vector quantization to maintain volumetric consistency and storage efficiency. Our comprehensive evaluation across diverse indoor and outdoor scenes demonstrates that this structure-aware approach achieves up to 32.62% improvement in PSNR, 19.12% in SSIM, and 45.41% in LPIPS at equivalent model sizes, and correspondingly, for an indoor scene, our model maintains the visual quality with 2.3% of the original model size.
January 2025. https://arxiv.org/abs/2501.13045
57 GSVC: Efficient Video Representation and Compression Through 2D Gaussian Splatting Longan Wang,Yuang Shi,Wei Tsang Ooi
Abstract3D Gaussian splats have emerged as a revolutionary, effective, learned representation for static 3D scenes. In this work, we explore using 2D Gaussian splats as a new primitive for representing videos. We propose GSVC, an approach to learning a set of 2D Gaussian splats that can effectively represent and compress video frames. GSVC incorporates the following techniques: (i) To exploit temporal redundancy among adjacent frames, which can speed up training and improve the compression efficiency, we predict the Gaussian splats of a frame based on its previous frame; (ii) To control the trade-offs between file size and quality, we remove Gaussian splats with low contribution to the video quality; (iii) To capture dynamics in videos, we randomly add Gaussian splats to fit content with large motion or newly-appeared objects; (iv) To handle significant changes in the scene, we detect key frames based on loss differences during the learning process. Experiment results show that GSVC achieves good rate-distortion trade-offs, comparable to state-of-the-art video codecs such as AV1 and VVC, and a rendering speed of 1500 fps for a 1920x1080 video.
January 2025. https://arxiv.org/abs/2501.12060
56 Volumetrically Consistent 3D Gaussian Rasterization Chinmay Talegaonkar,Yash Belhe,Ravi Ramamoorthi,Nicholas Antipa
AbstractRecently, 3D Gaussian Splatting (3DGS) has enabled photorealistic view synthesis at high inference speeds. However, its splatting-based rendering model makes several approximations to the rendering equation, reducing physical accuracy. We show that splatting and its approximations are unnecessary, even within a rasterizer; we instead volumetrically integrate 3D Gaussians directly to compute the transmittance across them analytically. We use this analytic transmittance to derive more physically-accurate alpha values than 3DGS, which can directly be used within their framework. The result is a method that more closely follows the volume rendering equation (similar to ray-tracing) while enjoying the speed benefits of rasterization. Our method represents opaque surfaces with higher accuracy and fewer points than 3DGS. This enables it to outperform 3DGS for view synthesis (measured in SSIM and LPIPS). Being volumetrically consistent also enables our method to work out of the box for tomography. We match the state-of-the-art 3DGS-based tomography method with fewer points.
December 2024. https://arxiv.org/abs/2412.03378
55 DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions Vishagar Arunan,Saeedha Nazar,Hashiru Pramuditha,Vinasirajan Viruthshaan,Sameera Ramasinghe,Simon Lucey,Ranga Rodrigo
AbstractSplatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 15% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
January 2025. https://arxiv.org/abs/2501.12369
54 F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Consistent Gaussian Splatting Yuxin Wang,Qianyi Wu,Dan Xu
AbstractThis paper tackles the problem of generalizable 3D-aware generation from monocular datasets, e.g., ImageNet. The key challenge of this task is learning a robust 3D-aware representation without multi-view or dynamic data, while ensuring consistent texture and geometry across different viewpoints. Although some baseline methods are capable of 3D-aware generation, the quality of the generated images still lags behind state-of-the-art 2D generation approaches, which excel in producing high-quality, detailed images. To address this severe limitation, we propose a novel feed-forward pipeline based on pixel-aligned Gaussian Splatting, coined as F3D-Gaus, which can produce more realistic and reliable 3D renderings from monocular inputs. In addition, we introduce a self-supervised cycle-consistent constraint to enforce cross-view consistency in the learned 3D representation. This training strategy naturally allows aggregation of multiple aligned Gaussian primitives and significantly alleviates the interpolation limitations inherent in single-view pixel-aligned Gaussian Splatting. Furthermore, we incorporate video model priors to perform geometry-aware refinement, enhancing the generation of fine details in wide-viewpoint scenarios and improving the model's capability to capture intricate 3D textures. Extensive experiments demonstrate that our approach not only achieves high-quality, multi-view consistent 3D-aware generation from monocular datasets, but also significantly improves training and inference efficiency.
January 2025. https://arxiv.org/abs/2501.06714
53 DehazeGS: Seeing Through Fog with 3D Gaussian Splatting Jinze Yu,Yiqun Wang,Zhengda Lu,Jianwei Guo,Yong Li,Hongxing Qin,Xiaopeng Zhang
AbstractCurrent novel view synthesis tasks primarily rely on high-quality and clear images. However, in foggy scenes, scattering and attenuation can significantly degrade the reconstruction and rendering quality. Although NeRF-based dehazing reconstruction algorithms have been developed, their use of deep fully connected neural networks and per-ray sampling strategies leads to high computational costs. Moreover, NeRF's implicit representation struggles to recover fine details from hazy scenes. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction by explicitly modeling point clouds into 3D Gaussians. In this paper, we propose leveraging the explicit Gaussian representation to explain the foggy image formation process through a physically accurate forward rendering process. We introduce DehazeGS, a method capable of decomposing and rendering a fog-free background from participating media using only muti-view foggy images as input. We model the transmission within each Gaussian distribution to simulate the formation of fog. During this process, we jointly learn the atmospheric light and scattering coefficient while optimizing the Gaussian representation of the hazy scene. In the inference stage, we eliminate the effects of scattering and attenuation on the Gaussians and directly project them onto a 2D plane to obtain a clear view. Experiments on both synthetic and real-world foggy datasets demonstrate that DehazeGS achieves state-of-the-art performance in terms of both rendering quality and computational efficiency. visualizations are available at https://dehazegs.github.io/
January 2025. https://arxiv.org/abs/2501.03659
52 See In Detail: Enhancing Sparse-view 3D Gaussian Splatting with Local Depth and Semantic Regularization Zongqi He,Zhe Xiao,Kin-Chung Chan,Yushen Zuo,Jun Xiao,Kin-Man Lam
Abstract3D Gaussian Splatting (3DGS) has shown remarkable performance in novel view synthesis. However, its rendering quality deteriorates with sparse inphut views, leading to distorted content and reduced details. This limitation hinders its practical application. To address this issue, we propose a sparse-view 3DGS method. Given the inherently ill-posed nature of sparse-view rendering, incorporating prior information is crucial. We propose a semantic regularization technique, using features extracted from the pretrained DINO-ViT model, to ensure multi-view semantic consistency. Additionally, we propose local depth regularization, which constrains depth values to improve generalization on unseen views. Our method outperforms state-of-the-art novel view synthesis approaches, achieving up to 0.4dB improvement in terms of PSNR on the LLFF dataset, with reduced distortion and enhanced visual quality.
January 2025. https://arxiv.org/abs/2501.11508
51 GSTAR: Gaussian Surface Tracking and Reconstruction Chengwei Zheng,Lixin Xue,Juan Zarate,Jie Song
Abstract3D Gaussian Splatting techniques have enabled efficient photo-realistic rendering of static scenes. Recent works have extended these approaches to support surface reconstruction and tracking. However, tracking dynamic surfaces with 3D Gaussians remains challenging due to complex topology changes, such as surfaces appearing, disappearing, or splitting. To address these challenges, we propose GSTAR, a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology. Given multi-view captures as input, GSTAR binds Gaussians to mesh faces to represent dynamic objects. For surfaces with consistent topology, GSTAR maintains the mesh topology and tracks the meshes using Gaussians. In regions where topology changes, GSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and the generation of new surfaces based on these optimized Gaussians. Additionally, we introduce a surface-based scene flow method that provides robust initialization for tracking between frames. Experiments demonstrate that our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications. Our project page with the code release is available at https://eth-ait.github.io/GSTAR/.
January 2025. https://arxiv.org/abs/2501.10283
50 RDG-GS: Relative Depth Guidance with Gaussian Splatting for Real-time Sparse-View 3D Rendering Chenlu Zhan,Yufei Zhang,Yu Lin,Gaoang Wang,Hongwei Wang
AbstractEfficiently synthesizing novel views from sparse inputs while maintaining accuracy remains a critical challenge in 3D reconstruction. While advanced techniques like radiance fields and 3D Gaussian Splatting achieve rendering quality and impressive efficiency with dense view inputs, they suffer from significant geometric reconstruction errors when applied to sparse input views. Moreover, although recent methods leverage monocular depth estimation to enhance geometric learning, their dependence on single-view estimated depth often leads to view inconsistency issues across different viewpoints. Consequently, this reliance on absolute depth can introduce inaccuracies in geometric information, ultimately compromising the quality of scene reconstruction with Gaussian splats. In this paper, we present RDG-GS, a novel sparse-view 3D rendering framework with Relative Depth Guidance based on 3D Gaussian Splatting. The core innovation lies in utilizing relative depth guidance to refine the Gaussian field, steering it towards view-consistent spatial geometric representations, thereby enabling the reconstruction of accurate geometric structures and capturing intricate textures. First, we devise refined depth priors to rectify the coarse estimated depth and insert global and fine-grained scene information to regular Gaussians. Building on this, to address spatial geometric inaccuracies from absolute depth, we propose relative depth guidance by optimizing the similarity between spatially correlated patches of depth and images. Additionally, we also directly deal with the sparse areas challenging to converge by the adaptive sampling for quick densification. Across extensive experiments on Mip-NeRF360, LLFF, DTU, and Blender, RDG-GS demonstrates state-of-the-art rendering quality and efficiency, making a significant advancement for real-world application.
January 2025. https://arxiv.org/abs/2501.11102
49 SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition Xu Hu,Yuxi Wang,Lue Fan,Chuanchen Luo,Junsong Fan,Zhen Lei,Qing Li,Junran Peng,Zhaoxiang Zhang
Abstract3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis, benefiting from its high-quality rendering results and real-time rendering speed. However, the 3D Gaussians learned by 3D-GS have ambiguous structures without any geometry constraints. This inherent issue in 3D-GS leads to a rough boundary when segmenting individual objects. To remedy these problems, we propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS to improve segmentation accuracy while preserving segmentation speed. Specifically, we introduce a Gaussian Decomposition scheme, which ingeniously utilizes the special structure of 3D Gaussian, finds out, and then decomposes the boundary Gaussians. Moreover, to achieve fast interactive 3D segmentation, we introduce a novel training-free pipeline by lifting a 2D foundation model to 3D-GS. Extensive experiments demonstrate that our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
January 2024. https://arxiv.org/abs/2401.17857
48 Decoupling Appearance Variations with 3D Consistent Features in Gaussian Splatting Jiaqi Lin,Zhihao Li,Binxiao Huang,Xiao Tang,Jianzhuang Liu,Shiyong Liu,Xiaofei Wu,Fenglong Song,Wenming Yang
AbstractGaussian Splatting has emerged as a prominent 3D representation in novel view synthesis, but it still suffers from appearance variations, which are caused by various factors, such as modern camera ISPs, different time of day, weather conditions, and local light changes. These variations can lead to floaters and color distortions in the rendered images/videos. Recent appearance modeling approaches in Gaussian Splatting are either tightly coupled with the rendering process, hindering real-time rendering, or they only account for mild global variations, performing poorly in scenes with local light changes. In this paper, we propose DAVIGS, a method that decouples appearance variations in a plug-and-play and efficient manner. By transforming the rendering results at the image level instead of the Gaussian level, our approach can model appearance variations with minimal optimization time and memory overhead. Furthermore, our method gathers appearance-related information in 3D space to transform the rendered images, thus building 3D consistency across views implicitly. We validate our method on several appearance-variant scenes, and demonstrate that it achieves state-of-the-art rendering quality with minimal training time and memory usage, without compromising rendering speeds. Additionally, it provides performance improvements for different Gaussian Splatting baselines in a plug-and-play manner.
January 2025. https://arxiv.org/abs/2501.10788
47 3DGS-CD: 3D Gaussian Splatting-based Change Detection for Physical Object Rearrangement Ziqi Lu,Jianbo Ye,John Leonard
AbstractWe present 3DGS-CD, the first 3D Gaussian Splatting (3DGS)-based method for detecting physical object rearrangements in 3D scenes. Our approach estimates 3D object-level changes by comparing two sets of unaligned images taken at different times. Leveraging 3DGS's novel view rendering and EfficientSAM's zero-shot segmentation capabilities, we detect 2D object-level changes, which are then associated and fused across views to estimate 3D change masks and object transformations. Our method can accurately identify changes in cluttered environments using sparse (as few as one) post-change images within as little as 18s. It does not rely on depth input, user instructions, pre-defined object classes, or object models -- An object is recognized simply if it has been re-arranged. Our approach is evaluated on both public and self-collected real-world datasets, achieving up to 14% higher accuracy and three orders of magnitude faster performance compared to the state-of-the-art radiance-field-based change detection method. This significant performance boost enables a broad range of downstream applications, where we highlight three key use cases: object reconstruction, robot workspace reset, and 3DGS model update. Our code and data will be made available at https://github.com/520xyxyzq/3DGS-CD.
November 2024. https://arxiv.org/abs/2411.03706
46 Beyond Uncertainty: Risk-Aware Active View Acquisition for Safe Robot Navigation and 3D Scene Understanding with FisherRF Guangyi Liu,Wen Jiang,Boshu Lei,Vivek Pandey,Kostas Daniilidis,Nader Motee
AbstractThe active view acquisition problem has been extensively studied in the context of robot navigation using NeRF and 3D Gaussian Splatting. To enhance scene reconstruction efficiency and ensure robot safety, we propose the Risk-aware Environment Masking (RaEM) framework. RaEM leverages coherent risk measures to dynamically prioritize safety-critical regions of the unknown environment, guiding active view acquisition algorithms toward identifying the next-best-view (NBV). Integrated with FisherRF, which selects the NBV by maximizing expected information gain, our framework achieves a dual objective: improving robot safety and increasing efficiency in risk-aware 3D scene reconstruction and understanding. Extensive high-fidelity experiments validate the effectiveness of our approach, demonstrating its ability to establish a robust and safety-focused framework for active robot exploration and 3D scene understanding.
March 2024. https://arxiv.org/abs/2403.11396
45 Poxel: Voxel Reconstruction for 3D Printing Ruixiang Cao,Satoshi Yagi,Satoshi Yamamori,Jun Morimoto
AbstractRecent advancements in 3D reconstruction, especially through neural rendering approaches like Neural Radiance Fields (NeRF) and Plenoxel, have led to high-quality 3D visualizations. However, these methods are optimized for digital environments and employ view-dependent color models (RGB) and 2D splatting techniques, which do not translate well to physical 3D printing. This paper introduces "Poxel", which stands for Printable-Voxel, a voxel-based 3D reconstruction framework optimized for photopolymer jetting 3D printing, which allows for high-resolution, full-color 3D models using a CMYKWCl color model. Our framework directly outputs printable voxel grids by removing view-dependency and converting the digital RGB color space to a physical CMYKWCl color space suitable for multi-material jetting. The proposed system achieves better fidelity and quality in printed models, aligning with the requirements of physical 3D objects.
January 2025. https://arxiv.org/abs/2501.10474
44 Creating Virtual Environments with 3D Gaussian Splatting: A Comparative Study Shi Qiu,Binzhu Xie,Qixuan Liu,Pheng-Ann Heng
Abstract3D Gaussian Splatting (3DGS) has recently emerged as an innovative and efficient 3D representation technique. While its potential for extended reality (XR) applications is frequently highlighted, its practical effectiveness remains underexplored. In this work, we examine three distinct 3DGS-based approaches for virtual environment (VE) creation, leveraging their unique strengths for efficient and visually compelling scene representation. By conducting a comparable study, we evaluate the feasibility of 3DGS in creating immersive VEs, identify its limitations in XR applications, and discuss future research and development opportunities.
January 2025. https://arxiv.org/abs/2501.09302
43 BloomScene: Lightweight Structured 3D Gaussian Splatting for Crossmodal Scene Generation Xiaolu Hou,Mingcheng Li,Dingkang Yang,Jiawei Chen,Ziyun Qian,Xiao Zhao,Yue Jiang,Jinjie Wei,Qingyao Xu,Lihua Zhang
AbstractWith the widespread use of virtual reality applications, 3D scene generation has become a new challenging research frontier. 3D scenes have highly complex structures and need to ensure that the output is dense, coherent, and contains all necessary structures. Many current 3D scene generation methods rely on pre-trained text-to-image diffusion models and monocular depth estimators. However, the generated scenes occupy large amounts of storage space and often lack effective regularisation methods, leading to geometric distortions. To this end, we propose BloomScene, a lightweight structured 3D Gaussian splatting for crossmodal scene generation, which creates diverse and high-quality 3D scenes from text or image inputs. Specifically, a crossmodal progressive scene generation framework is proposed to generate coherent scenes utilizing incremental point cloud reconstruction and 3D Gaussian splatting. Additionally, we propose a hierarchical depth prior-based regularization mechanism that utilizes multi-level constraints on depth accuracy and smoothness to enhance the realism and continuity of the generated scenes. Ultimately, we propose a structured context-guided compression mechanism that exploits structured hash grids to model the context of unorganized anchor attributes, which significantly eliminates structural redundancy and reduces storage overhead. Comprehensive experiments across multiple scenes demonstrate the significant potential and advantages of our framework compared with several baselines.
January 2025. https://arxiv.org/abs/2501.10462
42 GS-LIVO: Real-Time LiDAR, Inertial, and Visual Multi-sensor Fused Odometry with Gaussian Mapping Sheng Hong,Chunran Zheng,Yishu Shen,Changze Li,Fu Zhang,Tong Qin,Shaojie Shen
AbstractIn recent years, 3D Gaussian splatting (3D-GS) has emerged as a novel scene representation approach. However, existing vision-only 3D-GS methods often rely on hand-crafted heuristics for point-cloud densification and face challenges in handling occlusions and high GPU memory and computation consumption. LiDAR-Inertial-Visual (LIV) sensor configuration has demonstrated superior performance in localization and dense mapping by leveraging complementary sensing characteristics: rich texture information from cameras, precise geometric measurements from LiDAR, and high-frequency motion data from IMU. Inspired by this, we propose a novel real-time Gaussian-based simultaneous localization and mapping (SLAM) system. Our map system comprises a global Gaussian map and a sliding window of Gaussians, along with an IESKF-based odometry. The global Gaussian map consists of hash-indexed voxels organized in a recursive octree, effectively covering sparse spatial volumes while adapting to different levels of detail and scales. The Gaussian map is initialized through multi-sensor fusion and optimized with photometric gradients. Our system incrementally maintains a sliding window of Gaussians, significantly reducing GPU computation and memory consumption by only optimizing the map within the sliding window. Moreover, we implement a tightly coupled multi-sensor fusion odometry with an iterative error state Kalman filter (IESKF), leveraging real-time updating and rendering of the Gaussian map. Our system represents the first real-time Gaussian-based SLAM framework deployable on resource-constrained embedded systems, demonstrated on the NVIDIA Jetson Orin NX platform. The framework achieves real-time performance while maintaining robust multi-sensor fusion capabilities. All implementation algorithms, hardware designs, and CAD models will be publicly available.
January 2025. https://arxiv.org/abs/2501.08672
41 Detecting Contextual Anomalies by Discovering Consistent Spatial Regions Zhengye Yang,Richard J. Radke
AbstractWe describe a method for modeling spatial context to enable video anomaly detection. The main idea is to discover regions that share similar object-level activities by clustering joint object attributes using Gaussian mixture models. We demonstrate that this straightforward approach, using orders of magnitude fewer parameters than competing models, achieves state-of-the-art performance in the challenging spatial-context-dependent Street Scene dataset. As a side benefit, the high-resolution discovered regions learned by the model also provide explainable normalcy maps for human operators without the need for any pre-trained segmentation model.
January 2025. https://arxiv.org/abs/2501.08470
40 SplatMAP: Online Dense Monocular SLAM with 3D Gaussian Splatting Yue Hu,Rong Liu,Meida Chen,Peter Beerel,Andrew Feng
AbstractAchieving high-fidelity 3D reconstruction from monocular video remains challenging due to the inherent limitations of traditional methods like Structure-from-Motion (SfM) and monocular SLAM in accurately capturing scene details. While differentiable rendering techniques such as Neural Radiance Fields (NeRF) address some of these challenges, their high computational costs make them unsuitable for real-time applications. Additionally, existing 3D Gaussian Splatting (3DGS) methods often focus on photometric consistency, neglecting geometric accuracy and failing to exploit SLAM's dynamic depth and pose updates for scene refinement. We propose a framework integrating dense SLAM with 3DGS for real-time, high-fidelity dense reconstruction. Our approach introduces SLAM-Informed Adaptive Densification, which dynamically updates and densifies the Gaussian model by leveraging dense point clouds from SLAM. Additionally, we incorporate Geometry-Guided Optimization, which combines edge-aware geometric constraints and photometric consistency to jointly optimize the appearance and geometry of the 3DGS scene representation, enabling detailed and accurate SLAM mapping reconstruction. Experiments on the Replica and TUM-RGBD datasets demonstrate the effectiveness of our approach, achieving state-of-the-art results among monocular systems. Specifically, our method achieves a PSNR of 36.864, SSIM of 0.985, and LPIPS of 0.040 on Replica, representing improvements of 10.7%, 6.4%, and 49.4%, respectively, over the previous SOTA. On TUM-RGBD, our method outperforms the closest baseline by 10.2%, 6.6%, and 34.7% in the same metrics. These results highlight the potential of our framework in bridging the gap between photometric and geometric dense 3D scene representations, paving the way for practical and efficient monocular dense reconstruction.
January 2025. https://arxiv.org/abs/2501.07015
39 RF-3DGS: Wireless Channel Modeling with Radio Radiance Field and 3D Gaussian Splatting Lihao Zhang,Haijian Sun,Samuel Berweger,Camillo Gentile,Rose Qingyang Hu
AbstractPrecisely modeling radio propagation in complex environments has been a significant challenge, especially with the advent of 5G and beyond networks, where managing massive antenna arrays demands more detailed information. Traditional methods, such as empirical models and ray tracing, often fall short, either due to insufficient details or because of challenges for real-time applications. Inspired by the newly proposed 3D Gaussian Splatting method in the computer vision domain, which outperforms other methods in reconstructing optical radiance fields, we propose RF-3DGS, a novel approach that enables precise site-specific reconstruction of radio radiance fields from sparse samples. RF-3DGS can render radio spatial spectra at arbitrary positions within 2 ms following a brief 3-minute training period, effectively identifying dominant propagation paths. Furthermore, RF-3DGS can provide fine-grained Spatial Channel State Information (Spatial-CSI) of these paths, including the channel gain, the delay, the angle of arrival (AoA), and the angle of departure (AoD). Our experiments, calibrated through real-world measurements, demonstrate that RF-3DGS not only significantly improves reconstruction quality, training efficiency, and rendering speed compared to state-of-the-art methods, but also holds great potential for supporting wireless communication and advanced applications such as Integrated Sensing and Communication (ISAC). Code and dataset will be available at https://github.com/SunLab-UGA/RF-3DGS.
November 2024. https://arxiv.org/abs/2411.19420
38 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering Meenakshi Krishnan,Liam Fowl,Ramani Duraiswami
AbstractDifferentiable 3D Gaussian splatting has emerged as an efficient and flexible rendering technique for representing complex scenes from a collection of 2D views and enabling high-quality real-time novel-view synthesis. However, its reliance on photometric losses can lead to imprecisely reconstructed geometry and extracted meshes, especially in regions with high curvature or fine detail. We propose a novel regularization method using the gradients of a signed distance function estimated from the Gaussians, to improve the quality of rendering while also extracting a surface mesh. The regularizing normal supervision facilitates better rendering and mesh reconstruction, which is crucial for downstream applications in video generation, animation, AR-VR and gaming. We demonstrate the effectiveness of our approach on datasets such as Mip-NeRF360, Tanks and Temples, and Deep-Blending. Our method scores higher on photorealism metrics compared to other mesh extracting rendering methods without compromising mesh quality.
January 2025. https://arxiv.org/abs/2501.08370
37 Gaussian Eigen Models for Human Heads Wojciech Zielonka,Timo Bolkart,Thabo Beeler,Justus Thies
AbstractCurrent personalized neural head avatars face a trade-off: lightweight models lack detail and realism, while high-quality, animatable avatars require significant computational resources, making them unsuitable for commodity devices. To address this gap, we introduce Gaussian Eigen Models (GEM), which provide high-quality, lightweight, and easily controllable head avatars. GEM utilizes 3D Gaussian primitives for representing the appearance combined with Gaussian splatting for rendering. Building on the success of mesh-based 3D morphable face models (3DMM), we define GEM as an ensemble of linear eigenbases for representing the head appearance of a specific subject. In particular, we construct linear bases to represent the position, scale, rotation, and opacity of the 3D Gaussians. This allows us to efficiently generate Gaussian primitives of a specific head shape by a linear combination of the basis vectors, only requiring a low-dimensional parameter vector that contains the respective coefficients. We propose to construct these linear bases (GEM) by distilling high-quality compute-intense CNN-based Gaussian avatar models that can generate expression-dependent appearance changes like wrinkles. These high-quality models are trained on multi-view videos of a subject and are distilled using a series of principal component analyses. Once we have obtained the bases that represent the animatable appearance space of a specific human, we learn a regressor that takes a single RGB image as input and predicts the low-dimensional parameter vector that corresponds to the shown facial expression. In a series of experiments, we compare GEM's self-reenactment and cross-person reenactment results to state-of-the-art 3D avatar methods, demonstrating GEM's higher visual quality and better generalization to new expressions.
July 2024. https://arxiv.org/abs/2407.04545
36 VINGS-Mono: Visual-Inertial Gaussian Splatting Monocular SLAM in Large Scenes Ke Wu,Zicheng Zhang,Muer Tie,Ziqing Ai,Zhongxue Gan,Wenchao Ding
AbstractVINGS-Mono is a monocular (inertial) Gaussian Splatting (GS) SLAM framework designed for large scenes. The framework comprises four main components: VIO Front End, 2D Gaussian Map, NVS Loop Closure, and Dynamic Eraser. In the VIO Front End, RGB frames are processed through dense bundle adjustment and uncertainty estimation to extract scene geometry and poses. Based on this output, the mapping module incrementally constructs and maintains a 2D Gaussian map. Key components of the 2D Gaussian Map include a Sample-based Rasterizer, Score Manager, and Pose Refinement, which collectively improve mapping speed and localization accuracy. This enables the SLAM system to handle large-scale urban environments with up to 50 million Gaussian ellipsoids. To ensure global consistency in large-scale scenes, we design a Loop Closure module, which innovatively leverages the Novel View Synthesis (NVS) capabilities of Gaussian Splatting for loop closure detection and correction of the Gaussian map. Additionally, we propose a Dynamic Eraser to address the inevitable presence of dynamic objects in real-world outdoor scenes. Extensive evaluations in indoor and outdoor environments demonstrate that our approach achieves localization performance on par with Visual-Inertial Odometry while surpassing recent GS/NeRF SLAM methods. It also significantly outperforms all existing methods in terms of mapping and rendering quality. Furthermore, we developed a mobile app and verified that our framework can generate high-quality Gaussian maps in real time using only a smartphone camera and a low-frequency IMU sensor. To the best of our knowledge, VINGS-Mono is the first monocular Gaussian SLAM method capable of operating in outdoor environments and supporting kilometer-scale large scenes.
January 2025. https://arxiv.org/abs/2501.08286
35 Object-Centric 2D Gaussian Splatting: Background Removal and Occlusion-Aware Pruning for Compact Object Models Marcel Rogge,Didier Stricker
AbstractCurrent Gaussian Splatting approaches are effective for reconstructing entire scenes but lack the option to target specific objects, making them computationally expensive and unsuitable for object-specific applications. We propose a novel approach that leverages object masks to enable targeted reconstruction, resulting in object-centric models. Additionally, we introduce an occlusion-aware pruning strategy to minimize the number of Gaussians without compromising quality. Our method reconstructs compact object models, yielding object-centric Gaussian and mesh representations that are up to 96\% smaller and up to 71\% faster to train compared to the baseline while retaining competitive quality. These representations are immediately usable for downstream applications such as appearance editing and physics simulation without additional processing.
January 2025. https://arxiv.org/abs/2501.08174
34 Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution Du Chen,Liyi Chen,Zhengqiang Zhang,Lei Zhang
AbstractEquipped with the continuous representation capability of Multi-Layer Perceptron (MLP), Implicit Neural Representation (INR) has been successfully employed for Arbitrary-scale Super-Resolution (ASR). However, the limited receptive field of the linear layers in MLP restricts the representation capability of INR, while it is computationally expensive to query the MLP numerous times to render each pixel. Recently, Gaussian Splatting (GS) has shown its advantages over INR in both visual quality and rendering speed in 3D tasks, which motivates us to explore whether GS can be employed for the ASR task. However, directly applying GS to ASR is exceptionally challenging because the original GS is an optimization-based method through overfitting each single scene, while in ASR we aim to learn a single model that can generalize to different images and scaling factors. We overcome these challenges by developing two novel techniques. Firstly, to generalize GS for ASR, we elaborately design an architecture to predict the corresponding image-conditioned Gaussians of the input low-resolution image in a feed-forward manner. Secondly, we implement an efficient differentiable 2D GPU/CUDA-based scale-aware rasterization to render super-resolved images by sampling discrete RGB values from the predicted contiguous Gaussians. Via end-to-end training, our optimized network, namely GSASR, can perform ASR for any image and unseen scaling factors. Extensive experiments validate the effectiveness of our proposed method. The project page can be found at \url{https://mt-cly.github.io/GSASR.github.io/}.
January 2025. https://arxiv.org/abs/2501.06838
33 Revisiting Birds Eye View Perception Models with Frozen Foundation Models: DINOv2 and Metric3Dv2 Seamie Hayes,Ganesh Sistu,Ciar\xc3\xa1n Eising
AbstractBirds Eye View perception models require extensive data to perform and generalize effectively. While traditional datasets often provide abundant driving scenes from diverse locations, this is not always the case. It is crucial to maximize the utility of the available training data. With the advent of large foundation models such as DINOv2 and Metric3Dv2, a pertinent question arises: can these models be integrated into existing model architectures to not only reduce the required training data but surpass the performance of current models? We choose two model architectures in the vehicle segmentation domain to alter: Lift-Splat-Shoot, and Simple-BEV. For Lift-Splat-Shoot, we explore the implementation of frozen DINOv2 for feature extraction and Metric3Dv2 for depth estimation, where we greatly exceed the baseline results by 7.4 IoU while utilizing only half the training data and iterations. Furthermore, we introduce an innovative application of Metric3Dv2's depth information as a PseudoLiDAR point cloud incorporated into the Simple-BEV architecture, replacing traditional LiDAR. This integration results in a +3 IoU improvement compared to the Camera-only model.
January 2025. https://arxiv.org/abs/2501.08118
32 UnCommon Objects in 3D Xingchen Liu,Piyush Tayal,Jianyuan Wang,Jesus Zarzar,Tom Monnier,Konstantinos Tertikas,Jiali Duan,Antoine Toisoul,Jason Y. Zhang,Natalia Neverova,Andrea Vedaldi,Roman Shapovalov,David Novotny
AbstractWe introduce Uncommon Objects in 3D (uCO3D), a new object-centric dataset for 3D deep learning and 3D generative AI. uCO3D is the largest publicly-available collection of high-resolution videos of objects with 3D annotations that ensures full-360$^{\circ}$ coverage. uCO3D is significantly more diverse than MVImgNet and CO3Dv2, covering more than 1,000 object categories. It is also of higher quality, due to extensive quality checks of both the collected videos and the 3D annotations. Similar to analogous datasets, uCO3D contains annotations for 3D camera poses, depth maps and sparse point clouds. In addition, each object is equipped with a caption and a 3D Gaussian Splat reconstruction. We train several large 3D models on MVImgNet, CO3Dv2, and uCO3D and obtain superior results using the latter, showing that uCO3D is better for learning applications.
January 2025. https://arxiv.org/abs/2501.07574
31 Arc2Avatar: Generating Expressive 3D Avatars from a Single Image via ID Guidance Dimitrios Gerogiannis,Foivos Paraperas Papantoniou,Rolandos Alexandros Potamias,Alexandros Lattas,Stefanos Zafeiriou
AbstractInspired by the effectiveness of 3D Gaussian Splatting (3DGS) in reconstructing detailed 3D scenes within multi-view setups and the emergence of large 2D human foundation models, we introduce Arc2Avatar, the first SDS-based method utilizing a human face foundation model as guidance with just a single image as input. To achieve that, we extend such a model for diverse-view human head generation by fine-tuning on synthetic data and modifying its conditioning. Our avatars maintain a dense correspondence with a human face mesh template, allowing blendshape-based expression generation. This is achieved through a modified 3DGS approach, connectivity regularizers, and a strategic initialization tailored for our task. Additionally, we propose an optional efficient SDS-based correction step to refine the blendshape expressions, enhancing realism and diversity. Experiments demonstrate that Arc2Avatar achieves state-of-the-art realism and identity preservation, effectively addressing color issues by allowing the use of very low guidance, enabled by our strong identity prior and initialization strategy, without compromising detail. Please visit https://arc2avatar.github.io for more resources.
January 2025. https://arxiv.org/abs/2501.05379
30 3DGS-to-PC: Convert a 3D Gaussian Splatting Scene into a Dense Point Cloud or Mesh Lewis A G Stuart,Michael P Pound
Abstract3D Gaussian Splatting (3DGS) excels at producing highly detailed 3D reconstructions, but these scenes often require specialised renderers for effective visualisation. In contrast, point clouds are a widely used 3D representation and are compatible with most popular 3D processing software, yet converting 3DGS scenes into point clouds is a complex challenge. In this work we introduce 3DGS-to-PC, a flexible and highly customisable framework that is capable of transforming 3DGS scenes into dense, high-accuracy point clouds. We sample points probabilistically from each Gaussian as a 3D density function. We additionally threshold new points using the Mahalanobis distance to the Gaussian centre, preventing extreme outliers. The result is a point cloud that closely represents the shape encoded into the 3D Gaussian scene. Individual Gaussians use spherical harmonics to adapt colours depending on view, and each point may contribute only subtle colour hints to the resulting rendered scene. To avoid spurious or incorrect colours that do not fit with the final point cloud, we recalculate Gaussian colours via a customised image rendering approach, assigning each Gaussian the colour of the pixel to which it contributes most across all views. 3DGS-to-PC also supports mesh generation through Poisson Surface Reconstruction, applied to points sampled from predicted surface Gaussians. This allows coloured meshes to be generated from 3DGS scenes without the need for re-training. This package is highly customisable and capability of simple integration into existing 3DGS pipelines. 3DGS-to-PC provides a powerful tool for converting 3DGS data into point cloud and surface-based formats.
January 2025. https://arxiv.org/abs/2501.07478
29 Evaluating Human Perception of Novel View Synthesis: Subjective Quality Assessment of Gaussian Splatting and NeRF in Dynamic Scenes Yuhang Zhang,Joshua Maraval,Zhengyu Zhang,Nicolas Ramin,Shishun Tian,Lu Zhang
AbstractGaussian Splatting (GS) and Neural Radiance Fields (NeRF) are two groundbreaking technologies that have revolutionized the field of Novel View Synthesis (NVS), enabling immersive photorealistic rendering and user experiences by synthesizing multiple viewpoints from a set of images of sparse views. The potential applications of NVS, such as high-quality virtual and augmented reality, detailed 3D modeling, and realistic medical organ imaging, underscore the importance of quality assessment of NVS methods from the perspective of human perception. Although some previous studies have explored subjective quality assessments for NVS technology, they still face several challenges, especially in NVS methods selection, scenario coverage, and evaluation methodology. To address these challenges, we conducted two subjective experiments for the quality assessment of NVS technologies containing both GS-based and NeRF-based methods, focusing on dynamic and real-world scenes. This study covers 360\xc2\xb0, front-facing, and single-viewpoint videos while providing a richer and greater number of real scenes. Meanwhile, it's the first time to explore the impact of NVS methods in dynamic scenes with moving objects. The two types of subjective experiments help to fully comprehend the influences of different viewing paths from a human perception perspective and pave the way for future development of full-reference and no-reference quality metrics. In addition, we established a comprehensive benchmark of various state-of-the-art objective metrics on the proposed database, highlighting that existing methods still struggle to accurately capture subjective quality. The results give us some insights into the limitations of existing NVS methods and may promote the development of new NVS methods.
January 2025. https://arxiv.org/abs/2501.08072
28 HeadGAP: Few-Shot 3D Head Avatar via Generalizable Gaussian Priors Xiaozheng Zheng,Chao Wen,Zhaohu Li,Weiyi Zhang,Zhuo Su,Xu Chang,Yang Zhao,Zheng Lv,Xiaoyuan Zhang,Yongjie Zhang,Guidong Wang,Lan Xu
AbstractIn this paper, we present a novel 3D head avatar creation approach capable of generalizing from few-shot in-the-wild data with high-fidelity and animatable robustness. Given the underconstrained nature of this problem, incorporating prior knowledge is essential. Therefore, we propose a framework comprising prior learning and avatar creation phases. The prior learning phase leverages 3D head priors derived from a large-scale multi-view dynamic dataset, and the avatar creation phase applies these priors for few-shot personalization. Our approach effectively captures these priors by utilizing a Gaussian Splatting-based auto-decoder network with part-based dynamic modeling. Our method employs identity-shared encoding with personalized latent codes for individual identities to learn the attributes of Gaussian primitives. During the avatar creation phase, we achieve fast head avatar personalization by leveraging inversion and fine-tuning strategies. Extensive experiments demonstrate that our model effectively exploits head priors and successfully generalizes them to few-shot personalization, achieving photo-realistic rendering quality, multi-view consistency, and stable animation.
August 2024. https://arxiv.org/abs/2408.06019
27 RMAvatar: Photorealistic Human Avatar Reconstruction from Monocular Video Based on Rectified Mesh-embedded Gaussians Sen Peng,Weixing Xie,Zilong Wang,Xiaohu Guo,Zhonggui Chen,Baorong Yang,Xiao Dong
AbstractWe introduce RMAvatar, a novel human avatar representation with Gaussian splatting embedded on mesh to learn clothed avatar from a monocular video. We utilize the explicit mesh geometry to represent motion and shape of a virtual human and implicit appearance rendering with Gaussian Splatting. Our method consists of two main modules: Gaussian initialization module and Gaussian rectification module. We embed Gaussians into triangular faces and control their motion through the mesh, which ensures low-frequency motion and surface deformation of the avatar. Due to the limitations of LBS formula, the human skeleton is hard to control complex non-rigid transformations. We then design a pose-related Gaussian rectification module to learn fine-detailed non-rigid deformations, further improving the realism and expressiveness of the avatar. We conduct extensive experiments on public datasets, RMAvatar shows state-of-the-art performance on both rendering quality and quantitative evaluations. Please see our project page at https://rm-avatar.github.io.
January 2025. https://arxiv.org/abs/2501.07104
26 Synthetic Prior for Few-Shot Drivable Head Avatar Inversion Wojciech Zielonka,Stephan J. Garbin,Alexandros Lattas,George Kopanas,Paulo Gotardo,Thabo Beeler,Justus Thies,Timo Bolkart
AbstractWe present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior. We tackle two major challenges. First, training a controllable 3D generative network requires a large number of diverse sequences, for which pairs of images and high-quality tracked meshes are not always available. Second, state-of-the-art monocular avatar models struggle to generalize to new views and expressions, lacking a strong prior and often overfitting to a specific viewpoint distribution. Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads with diverse identities, expressions, and viewpoints. With few input images, SynShot fine-tunes the pretrained synthetic prior to bridge the domain gap, modeling a photorealistic head avatar that generalizes to novel expressions and viewpoints. We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space. To account for the different modeling complexities over parts of the head (e.g., skin vs hair), we embed the prior with explicit control for upsampling the number of per-part primitives. Compared to state-of-the-art monocular methods that require thousands of real training images, SynShot significantly improves novel view and expression synthesis.
January 2025. https://arxiv.org/abs/2501.06903
25 ActiveGAMER: Active GAussian Mapping through Efficient Rendering Liyan Chen,Huangying Zhan,Kevin Chen,Xiangyu Xu,Qingan Yan,Changjiang Cai,Yi Xu
AbstractWe introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
January 2025. https://arxiv.org/abs/2501.06897
24 MapGS: Generalizable Pretraining and Data Augmentation for Online Mapping via Novel View Synthesis Hengyuan Zhang,David Paz,Yuliang Guo,Xinyu Huang,Henrik I. Christensen,Liu Ren
AbstractOnline mapping reduces the reliance of autonomous vehicles on high-definition (HD) maps, significantly enhancing scalability. However, recent advancements often overlook cross-sensor configuration generalization, leading to performance degradation when models are deployed on vehicles with different camera intrinsics and extrinsics. With the rapid evolution of novel view synthesis methods, we investigate the extent to which these techniques can be leveraged to address the sensor configuration generalization challenge. We propose a novel framework leveraging Gaussian splatting to reconstruct scenes and render camera images in target sensor configurations. The target config sensor data, along with labels mapped to the target config, are used to train online mapping models. Our proposed framework on the nuScenes and Argoverse 2 datasets demonstrates a performance improvement of 18% through effective dataset augmentation, achieves faster convergence and efficient training, and exceeds state-of-the-art performance when using only 25% of the original training data. This enables data reuse and reduces the need for laborious data labeling. Project page at https://henryzhangzhy.github.io/mapgs.
January 2025. https://arxiv.org/abs/2501.06660
23 NVS-SQA: Exploring Self-Supervised Quality Representation Learning for Neurally Synthesized Scenes without References Qiang Qu,Yiran Shen,Xiaoming Chen,Yuk Ying Chung,Weidong Cai,Tongliang Liu
AbstractNeural View Synthesis (NVS), such as NeRF and 3D Gaussian Splatting, effectively creates photorealistic scenes from sparse viewpoints, typically evaluated by quality assessment methods like PSNR, SSIM, and LPIPS. However, these full-reference methods, which compare synthesized views to reference views, may not fully capture the perceptual quality of neurally synthesized scenes (NSS), particularly due to the limited availability of dense reference views. Furthermore, the challenges in acquiring human perceptual labels hinder the creation of extensive labeled datasets, risking model overfitting and reduced generalizability. To address these issues, we propose NVS-SQA, a NSS quality assessment method to learn no-reference quality representations through self-supervision without reliance on human labels. Traditional self-supervised learning predominantly relies on the "same instance, similar representation" assumption and extensive datasets. However, given that these conditions do not apply in NSS quality assessment, we employ heuristic cues and quality scores as learning objectives, along with a specialized contrastive pair preparation process to improve the effectiveness and efficiency of learning. The results show that NVS-SQA outperforms 17 no-reference methods by a large margin (i.e., on average 109.5% in SRCC, 98.6% in PLCC, and 91.5% in KRCC over the second best) and even exceeds 16 full-reference methods across all evaluation metrics (i.e., 22.9% in SRCC, 19.1% in PLCC, and 18.6% in KRCC over the second best).
January 2025. https://arxiv.org/abs/2501.06488
22 Splat-Nav: Safe Real-Time Robot Navigation in Gaussian Splatting Maps Timothy Chen,Ola Shorinwa,Joseph Bruno,Aiden Swann,Javier Yu,Weijia Zeng,Keiko Nagami,Philip Dames,Mac Schwager
AbstractWe present Splat-Nav, a real-time robot navigation pipeline for Gaussian Splatting (GSplat) scenes, a powerful new 3D scene representation. Splat-Nav consists of two components: 1) Splat-Plan, a safe planning module, and 2) Splat-Loc, a robust vision-based pose estimation module. Splat-Plan builds a safe-by-construction polytope corridor through the map based on mathematically rigorous collision constraints and then constructs a B\xc3\xa9zier curve trajectory through this corridor. Splat-Loc provides real-time recursive state estimates given only an RGB feed from an on-board camera, leveraging the point-cloud representation inherent in GSplat scenes. Working together, these modules give robots the ability to recursively re-plan smooth and safe trajectories to goal locations. Goals can be specified with position coordinates, or with language commands by using a semantic GSplat. We demonstrate improved safety compared to point cloud-based methods in extensive simulation experiments. In a total of 126 hardware flights, we demonstrate equivalent safety and speed compared to motion capture and visual odometry, but without a manual frame alignment required by those methods. We show online re-planning at more than 2 Hz and pose estimation at about 25 Hz, an order of magnitude faster than Neural Radiance Field (NeRF)-based navigation methods, thereby enabling real-time navigation. We provide experiment videos on our project page at https://chengine.github.io/splatnav/. Our codebase and ROS nodes can be found at https://github.com/chengine/splatnav.
March 2024. https://arxiv.org/abs/2403.02751
21 PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction Danpeng Chen,Hai Li,Weicai Ye,Yifan Wang,Weijian Xie,Shangjin Zhai,Nan Wang,Haomin Liu,Hujun Bao,Guofeng Zhang
AbstractRecently, 3D Gaussian Splatting (3DGS) has attracted widespread attention due to its high-quality rendering, and ultra-fast training and rendering speed. However, due to the unstructured and irregular nature of Gaussian point clouds, it is difficult to guarantee geometric reconstruction accuracy and multi-view consistency simply by relying on image reconstruction loss. Although many studies on surface reconstruction based on 3DGS have emerged recently, the quality of their meshes is generally unsatisfactory. To address this problem, we propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction while ensuring high-quality rendering. Specifically, we first introduce an unbiased depth rendering method, which directly renders the distance from the camera origin to the Gaussian plane and the corresponding normal map based on the Gaussian distribution of the point cloud, and divides the two to obtain the unbiased depth. We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy. We also propose a camera exposure compensation model to cope with scenes with large illumination variations. Experiments on indoor and outdoor scenes show that our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.
June 2024. https://arxiv.org/abs/2406.06521
20 Locality-aware Gaussian Compression for Fast and High-quality Rendering Seungjoo Shin,Jaesik Park,Sunghyun Cho
AbstractWe present LocoGS, a locality-aware 3D Gaussian Splatting (3DGS) framework that exploits the spatial coherence of 3D Gaussians for compact modeling of volumetric scenes. To this end, we first analyze the local coherence of 3D Gaussian attributes, and propose a novel locality-aware 3D Gaussian representation that effectively encodes locally-coherent Gaussian attributes using a neural field representation with a minimal storage requirement. On top of the novel representation, LocoGS is carefully designed with additional components such as dense initialization, an adaptive spherical harmonics bandwidth scheme and different encoding schemes for different Gaussian attributes to maximize compression performance. Experimental results demonstrate that our approach outperforms the rendering quality of existing compact Gaussian representations for representative real-world 3D datasets while achieving from 54.6$\times$ to 96.6$\times$ compressed storage size and from 2.1$\times$ to 2.4$\times$ rendering speed than 3DGS. Even our approach also demonstrates an averaged 2.4$\times$ higher rendering speed than the state-of-the-art compression method with comparable compression performance.
January 2025. https://arxiv.org/abs/2501.05757
19 Zero-1-to-G: Taming Pretrained 2D Diffusion Model for Direct 3D Generation Xuyi Meng,Chen Wang,Jiahui Lei,Kostas Daniilidis,Jiatao Gu,Lingjie Liu
AbstractRecent advances in 2D image generation have achieved remarkable quality,largely driven by the capacity of diffusion models and the availability of large-scale datasets. However, direct 3D generation is still constrained by the scarcity and lower fidelity of 3D datasets. In this paper, we introduce Zero-1-to-G, a novel approach that addresses this problem by enabling direct single-view generation on Gaussian splats using pretrained 2D diffusion models. Our key insight is that Gaussian splats, a 3D representation, can be decomposed into multi-view images encoding different attributes. This reframes the challenging task of direct 3D generation within a 2D diffusion framework, allowing us to leverage the rich priors of pretrained 2D diffusion models. To incorporate 3D awareness, we introduce cross-view and cross-attribute attention layers, which capture complex correlations and enforce 3D consistency across generated splats. This makes Zero-1-to-G the first direct image-to-3D generative model to effectively utilize pretrained 2D diffusion priors, enabling efficient training and improved generalization to unseen objects. Extensive experiments on both synthetic and in-the-wild datasets demonstrate superior performance in 3D object generation, offering a new approach to high-quality 3D generation.
January 2025. https://arxiv.org/abs/2501.05427
18 GaussianVideo: Efficient Video Representation via Hierarchical Gaussian Splatting Andrew Bond,Jui-Hsien Wang,Long Mai,Erkut Erdem,Aykut Erdem
AbstractEfficient neural representations for dynamic video scenes are critical for applications ranging from video compression to interactive simulations. Yet, existing methods often face challenges related to high memory usage, lengthy training times, and temporal consistency. To address these issues, we introduce a novel neural video representation that combines 3D Gaussian splatting with continuous camera motion modeling. By leveraging Neural ODEs, our approach learns smooth camera trajectories while maintaining an explicit 3D scene representation through Gaussians. Additionally, we introduce a spatiotemporal hierarchical learning strategy, progressively refining spatial and temporal features to enhance reconstruction quality and accelerate convergence. This memory-efficient approach achieves high-quality rendering at impressive speeds. Experimental results show that our hierarchical learning, combined with robust camera motion modeling, captures complex dynamic scenes with strong temporal consistency, achieving state-of-the-art performance across diverse video datasets in both high- and low-motion scenarios.
January 2025. https://arxiv.org/abs/2501.04782
17 FatesGS: Fast and Accurate Sparse-View Surface Reconstruction using Gaussian Splatting with Depth-Feature Consistency Han Huang,Yulun Wu,Chao Deng,Ge Gao,Ming Gu,Yu-Shen Liu
AbstractRecently, Gaussian Splatting has sparked a new trend in the field of computer vision. Apart from novel view synthesis, it has also been extended to the area of multi-view reconstruction. The latest methods facilitate complete, detailed surface reconstruction while ensuring fast training speed. However, these methods still require dense input views, and their output quality significantly degrades with sparse views. We observed that the Gaussian primitives tend to overfit the few training views, leading to noisy floaters and incomplete reconstruction surfaces. In this paper, we present an innovative sparse-view reconstruction framework that leverages intra-view depth and multi-view feature consistency to achieve remarkably accurate surface reconstruction. Specifically, we utilize monocular depth ranking information to supervise the consistency of depth distribution within patches and employ a smoothness loss to enhance the continuity of the distribution. To achieve finer surface reconstruction, we optimize the absolute position of depth through multi-view projection features. Extensive experiments on DTU and BlendedMVS demonstrate that our method outperforms state-of-the-art methods with a speedup of 60x to 200x, achieving swift and fine-grained mesh reconstruction without the need for costly pre-training.
January 2025. https://arxiv.org/abs/2501.04628
16 Balanced 3DGS: Gaussian-wise Parallelism Rendering with Fine-Grained Tiling Hao Gui,Lin Hu,Rui Chen,Mingxiao Huang,Yuxin Yin,Jin Yang,Yong Wu,Chen Liu,Zhongxu Sun,Xueyang Zhang,Kun Zhan
Abstract3D Gaussian Splatting (3DGS) is increasingly attracting attention in both academia and industry owing to its superior visual quality and rendering speed. However, training a 3DGS model remains a time-intensive task, especially in load imbalance scenarios where workload diversity among pixels and Gaussian spheres causes poor renderCUDA kernel performance. We introduce Balanced 3DGS, a Gaussian-wise parallelism rendering with fine-grained tiling approach in 3DGS training process, perfectly solving load-imbalance issues. First, we innovatively introduce the inter-block dynamic workload distribution technique to map workloads to Streaming Multiprocessor(SM) resources within a single GPU dynamically, which constitutes the foundation of load balancing. Second, we are the first to propose the Gaussian-wise parallel rendering technique to significantly reduce workload divergence inside a warp, which serves as a critical component in addressing load imbalance. Based on the above two methods, we further creatively put forward the fine-grained combined load balancing technique to uniformly distribute workload across all SMs, which boosts the forward renderCUDA kernel performance by up to 7.52x. Besides, we present a self-adaptive render kernel selection strategy during the 3DGS training process based on different load-balance situations, which effectively improves training efficiency.
December 2024. https://arxiv.org/abs/2412.17378
15 Gaussian Building Mesh (GBM): Extract a Building's 3D Mesh with Google Earth and Gaussian Splatting Kyle Gao,Liangzhi Li,Hongjie He,Dening Lu,Linlin Xu,Jonathan Li
AbstractRecently released open-source pre-trained foundational image segmentation and object detection models (SAM2+GroundingDINO) allow for geometrically consistent segmentation of objects of interest in multi-view 2D images. Users can use text-based or click-based prompts to segment objects of interest without requiring labeled training datasets. Gaussian Splatting allows for the learning of the 3D representation of a scene's geometry and radiance based on 2D images. Combining Google Earth Studio, SAM2+GroundingDINO, 2D Gaussian Splatting, and our improvements in mask refinement based on morphological operations and contour simplification, we created a pipeline to extract the 3D mesh of any building based on its name, address, or geographic coordinates.
January 2025. https://arxiv.org/abs/2501.00625
14 ZDySS -- Zero-Shot Dynamic Scene Stylization using Gaussian Splatting Abhishek Saroha,Florian Hofherr,Mariia Gladkova,Cecilia Curreli,Or Litany,Daniel Cremers
AbstractStylizing a dynamic scene based on an exemplar image is critical for various real-world applications, including gaming, filmmaking, and augmented and virtual reality. However, achieving consistent stylization across both spatial and temporal dimensions remains a significant challenge. Most existing methods are designed for static scenes and often require an optimization process for each style image, limiting their adaptability. We introduce ZDySS, a zero-shot stylization framework for dynamic scenes, allowing our model to generalize to previously unseen style images at inference. Our approach employs Gaussian splatting for scene representation, linking each Gaussian to a learned feature vector that renders a feature map for any given view and timestamp. By applying style transfer on the learned feature vectors instead of the rendered feature map, we enhance spatio-temporal consistency across frames. Our method demonstrates superior performance and coherence over state-of-the-art baselines in tests on real-world dynamic scenes, making it a robust solution for practical applications.
January 2025. https://arxiv.org/abs/2501.03875
13 MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval Adjustment for Compact Dynamic 3D Gaussian Splatting Sangwoon Kwak,Joonsoo Kim,Jun Young Jeong,Won-Sik Cheong,Jihyong Oh,Munchurl Kim
Abstract3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
January 2025. https://arxiv.org/abs/2501.03714
12 ConcealGS: Concealing Invisible Copyright Information in 3D Gaussian Splatting Yifeng Yang,Hengyu Liu,Chenxin Li,Yining Sun,Wuyang Li,Yifan Liu,Yiyang Lin,Yixuan Yuan,Nanyang Ye
AbstractWith the rapid development of 3D reconstruction technology, the widespread distribution of 3D data has become a future trend. While traditional visual data (such as images and videos) and NeRF-based formats already have mature techniques for copyright protection, steganographic techniques for the emerging 3D Gaussian Splatting (3D-GS) format have yet to be fully explored. To address this, we propose ConcealGS, an innovative method for embedding implicit information into 3D-GS. By introducing the knowledge distillation and gradient optimization strategy based on 3D-GS, ConcealGS overcomes the limitations of NeRF-based models and enhances the robustness of implicit information and the quality of 3D reconstruction. We evaluate ConcealGS in various potential application scenarios, and experimental results have demonstrated that ConcealGS not only successfully recovers implicit information but also has almost no impact on rendering quality, providing a new approach for embedding invisible and recoverable information into 3D models in the future.
January 2025. https://arxiv.org/abs/2501.03605
11 Compression of 3D Gaussian Splatting with Optimized Feature Planes and Standard Video Codecs Soonbin Lee,Fangwen Shu,Yago Sanchez,Thomas Schierl,Cornelius Hellge
Abstract3D Gaussian Splatting is a recognized method for 3D scene representation, known for its high rendering quality and speed. However, its substantial data requirements present challenges for practical applications. In this paper, we introduce an efficient compression technique that significantly reduces storage overhead by using compact representation. We propose a unified architecture that combines point cloud data and feature planes through a progressive tri-plane structure. Our method utilizes 2D feature planes, enabling continuous spatial representation. To further optimize these representations, we incorporate entropy modeling in the frequency domain, specifically designed for standard video codecs. We also propose channel-wise bit allocation to achieve a better trade-off between bitrate consumption and feature plane representation. Consequently, our model effectively leverages spatial correlations within the feature planes to enhance rate-distortion performance using standard, non-differentiable video codecs. Experimental results demonstrate that our method outperforms existing methods in data compactness while maintaining high rendering quality. Our project page is available at https://fraunhoferhhi.github.io/CodecGS
January 2025. https://arxiv.org/abs/2501.03399
10 Gaussian Masked Autoencoders Jathushan Rajasegaran,Xinlei Chen,Rulilong Li,Christoph Feichtenhofer,Jitendra Malik,Shiry Ginosar
AbstractThis paper explores Masked Autoencoders (MAE) with Gaussian Splatting. While reconstructive self-supervised learning frameworks such as MAE learns good semantic abstractions, it is not trained for explicit spatial awareness. Our approach, named Gaussian Masked Autoencoder, or GMAE, aims to learn semantic abstractions and spatial understanding jointly. Like MAE, it reconstructs the image end-to-end in the pixel space, but beyond MAE, it also introduces an intermediate, 3D Gaussian-based representation and renders images via splatting. We show that GMAE can enable various zero-shot learning capabilities of spatial understanding (e.g., figure-ground segmentation, image layering, edge detection, etc.) while preserving the high-level semantics of self-supervised representation quality from MAE. To our knowledge, we are the first to employ Gaussian primitives in an image representation learning framework beyond optimization-based single-scene reconstructions. We believe GMAE will inspire further research in this direction and contribute to developing next-generation techniques for modeling high-fidelity visual data. More details at https://brjathu.github.io/gmae
January 2025. https://arxiv.org/abs/2501.03229
9 HOGSA: Bimanual Hand-Object Interaction Understanding with 3D Gaussian Splatting Based Data Augmentation Wentian Qu,Jiahe Li,Jian Cheng,Jian Shi,Chenyu Meng,Cuixia Ma,Hongan Wang,Xiaoming Deng,Yinda Zhang
AbstractUnderstanding of bimanual hand-object interaction plays an important role in robotics and virtual reality. However, due to significant occlusions between hands and object as well as the high degree-of-freedom motions, it is challenging to collect and annotate a high-quality, large-scale dataset, which prevents further improvement of bimanual hand-object interaction-related baselines. In this work, we propose a new 3D Gaussian Splatting based data augmentation framework for bimanual hand-object interaction, which is capable of augmenting existing dataset to large-scale photorealistic data with various hand-object pose and viewpoints. First, we use mesh-based 3DGS to model objects and hands, and to deal with the rendering blur problem due to multi-resolution input images used, we design a super-resolution module. Second, we extend the single hand grasping pose optimization module for the bimanual hand object to generate various poses of bimanual hand-object interaction, which can significantly expand the pose distribution of the dataset. Third, we conduct an analysis for the impact of different aspects of the proposed data augmentation on the understanding of the bimanual hand-object interaction. We perform our data augmentation on two benchmarks, H2O and Arctic, and verify that our method can improve the performance of the baselines.
January 2025. https://arxiv.org/abs/2501.02845
8 Efficient Density Control for 3D Gaussian Splatting Xiaobin Deng,Changyu Diao,Min Li,Ruohan Yu,Duanqing Xu
Abstract3D Gaussian Splatting (3DGS) excels in novel view synthesis, balancing advanced rendering quality with real-time performance. However, in trained scenes, a large number of Gaussians with low opacity significantly increase rendering costs. This issue arises due to flaws in the split and clone operations during the densification process, which lead to extensive Gaussian overlap and subsequent opacity reduction. To enhance the efficiency of Gaussian utilization, we improve the adaptive density control of 3DGS. First, we introduce a more efficient long-axis split operation to replace the original clone and split, which mitigates Gaussian overlap and improves densification efficiency.Second, we propose a simple adaptive pruning technique to reduce the number of low-opacity Gaussians. Finally, by dynamically lowering the splitting threshold and applying importance weighting, the efficiency of Gaussian utilization is further improved. We evaluate our proposed method on various challenging real-world datasets. Experimental results show that our Efficient Density Control (EDC) can enhance both the rendering speed and quality. Code is available at https://github.com/XiaoBin2001/EDC.
November 2024. https://arxiv.org/abs/2411.10133
7 GS-DiT: Advancing Video Generation with Pseudo 4D Gaussian Fields through Efficient Dense 3D Point Tracking Weikang Bian,Zhaoyang Huang,Xiaoyu Shi,Yijin Li,Fu-Yun Wang,Hongsheng Li
Abstract4D video control is essential in video generation as it enables the use of sophisticated lens techniques, such as multi-camera shooting and dolly zoom, which are currently unsupported by existing methods. Training a video Diffusion Transformer (DiT) directly to control 4D content requires expensive multi-view videos. Inspired by Monocular Dynamic novel View Synthesis (MDVS) that optimizes a 4D representation and renders videos according to different 4D elements, such as camera pose and object motion editing, we bring pseudo 4D Gaussian fields to video generation. Specifically, we propose a novel framework that constructs a pseudo 4D Gaussian field with dense 3D point tracking and renders the Gaussian field for all video frames. Then we finetune a pretrained DiT to generate videos following the guidance of the rendered video, dubbed as GS-DiT. To boost the training of the GS-DiT, we also propose an efficient Dense 3D Point Tracking (D3D-PT) method for the pseudo 4D Gaussian field construction. Our D3D-PT outperforms SpatialTracker, the state-of-the-art sparse 3D point tracking method, in accuracy and accelerates the inference speed by two orders of magnitude. During the inference stage, GS-DiT can generate videos with the same dynamic content while adhering to different camera parameters, addressing a significant limitation of current video generation models. GS-DiT demonstrates strong generalization capabilities and extends the 4D controllability of Gaussian splatting to video generation beyond just camera poses. It supports advanced cinematic effects through the manipulation of the Gaussian field and camera intrinsics, making it a powerful tool for creative video production. Demos are available at https://wkbian.github.io/Projects/GS-DiT/.
January 2025. https://arxiv.org/abs/2501.02690
6 BeSplat: Gaussian Splatting from a Single Blurry Image and Event Stream Gopi Raju Matta,Reddypalli Trisha,Kaushik Mitra
AbstractNovel view synthesis has been greatly enhanced by the development of radiance field methods. The introduction of 3D Gaussian Splatting (3DGS) has effectively addressed key challenges, such as long training times and slow rendering speeds, typically associated with Neural Radiance Fields (NeRF), while maintaining high-quality reconstructions. In this work (BeSplat), we demonstrate the recovery of sharp radiance field (Gaussian splats) from a single motion-blurred image and its corresponding event stream. Our method jointly learns the scene representation via Gaussian Splatting and recovers the camera motion through Bezier SE(3) formulation effectively, minimizing discrepancies between synthesized and real-world measurements of both blurry image and corresponding event stream. We evaluate our approach on both synthetic and real datasets, showcasing its ability to render view-consistent, sharp images from the learned radiance field and the estimated camera trajectory. To the best of our knowledge, ours is the first work to address this highly challenging ill-posed problem in a Gaussian Splatting framework with the effective incorporation of temporal information captured using the event stream.
December 2024. https://arxiv.org/abs/2412.19370
5 DreamDrive: Generative 4D Scene Modeling from Street View Images Jiageng Mao,Boyi Li,Boris Ivanovic,Yuxiao Chen,Yan Wang,Yurong You,Chaowei Xiao,Danfei Xu,Marco Pavone,Yue Wang
AbstractSynthesizing photo-realistic visual observations from an ego vehicle's driving trajectory is a critical step towards scalable training of self-driving models. Reconstruction-based methods create 3D scenes from driving logs and synthesize geometry-consistent driving videos through neural rendering, but their dependence on costly object annotations limits their ability to generalize to in-the-wild driving scenarios. On the other hand, generative models can synthesize action-conditioned driving videos in a more generalizable way but often struggle with maintaining 3D visual consistency. In this paper, we present DreamDrive, a 4D spatial-temporal scene generation approach that combines the merits of generation and reconstruction, to synthesize generalizable 4D driving scenes and dynamic driving videos with 3D consistency. Specifically, we leverage the generative power of video diffusion models to synthesize a sequence of visual references and further elevate them to 4D with a novel hybrid Gaussian representation. Given a driving trajectory, we then render 3D-consistent driving videos via Gaussian splatting. The use of generative priors allows our method to produce high-quality 4D scenes from in-the-wild driving data, while neural rendering ensures 3D-consistent video generation from the 4D scenes. Extensive experiments on nuScenes and street view images demonstrate that DreamDrive can generate controllable and generalizable 4D driving scenes, synthesize novel views of driving videos with high fidelity and 3D consistency, decompose static and dynamic elements in a self-supervised manner, and enhance perception and planning tasks for autonomous driving.
January 2025. https://arxiv.org/abs/2501.00601
4 Cloth-Splatting: 3D Cloth State Estimation from RGB Supervision Alberta Longhini,Marcel B\xc3\xbcsching,Bardienus P. Duisterhof,Jens Lundell,Jeffrey Ichnowski,M\xc3\xa5rten Bj\xc3\xb6rkman,Danica Kragic
AbstractWe introduce Cloth-Splatting, a method for estimating 3D states of cloth from RGB images through a prediction-update framework. Cloth-Splatting leverages an action-conditioned dynamics model for predicting future states and uses 3D Gaussian Splatting to update the predicted states. Our key insight is that coupling a 3D mesh-based representation with Gaussian Splatting allows us to define a differentiable map between the cloth state space and the image space. This enables the use of gradient-based optimization techniques to refine inaccurate state estimates using only RGB supervision. Our experiments demonstrate that Cloth-Splatting not only improves state estimation accuracy over current baselines but also reduces convergence time.
January 2025. https://arxiv.org/abs/2501.01715
3 CrossView-GS: Cross-view Gaussian Splatting For Large-scale Scene Reconstruction Chenhao Zhang,Yuanping Cao,Lei Zhang
Abstract3D Gaussian Splatting (3DGS) has emerged as a prominent method for scene representation and reconstruction, leveraging densely distributed Gaussian primitives to enable real-time rendering of high-resolution images. While existing 3DGS methods perform well in scenes with minor view variation, large view changes in cross-view scenes pose optimization challenges for these methods. To address these issues, we propose a novel cross-view Gaussian Splatting method for large-scale scene reconstruction, based on dual-branch fusion. Our method independently reconstructs models from aerial and ground views as two independent branches to establish the baselines of Gaussian distribution, providing reliable priors for cross-view reconstruction during both initialization and densification. Specifically, a gradient-aware regularization strategy is introduced to mitigate smoothing issues caused by significant view disparities. Additionally, a unique Gaussian supplementation strategy is utilized to incorporate complementary information of dual-branch into the cross-view model. Extensive experiments on benchmark datasets demonstrate that our method achieves superior performance in novel view synthesis compared to state-of-the-art methods.
January 2025. https://arxiv.org/abs/2501.01695
2 PG-SAG: Parallel Gaussian Splatting for Fine-Grained Large-Scale Urban Buildings Reconstruction via Semantic-Aware Grouping Tengfei Wang,Xin Wang,Yongmao Hou,Yiwei Xu,Wendi Zhang,Zongqian Zhan
Abstract3D Gaussian Splatting (3DGS) has emerged as a transformative method in the field of real-time novel synthesis. Based on 3DGS, recent advancements cope with large-scale scenes via spatial-based partition strategy to reduce video memory and optimization time costs. In this work, we introduce a parallel Gaussian splatting method, termed PG-SAG, which fully exploits semantic cues for both partitioning and Gaussian kernel optimization, enabling fine-grained building surface reconstruction of large-scale urban areas without downsampling the original image resolution. First, the Cross-modal model - Language Segment Anything is leveraged to segment building masks. Then, the segmented building regions is grouped into sub-regions according to the visibility check across registered images. The Gaussian kernels for these sub-regions are optimized in parallel with masked pixels. In addition, the normal loss is re-formulated for the detected edges of masks to alleviate the ambiguities in normal vectors on edges. Finally, to improve the optimization of 3D Gaussians, we introduce a gradient-constrained balance-load loss that accounts for the complexity of the corresponding scenes, effectively minimizing the thread waiting time in the pixel-parallel rendering stage as well as the reconstruction lost. Extensive experiments are tested on various urban datasets, the results demonstrated the superior performance of our PG-SAG on building surface reconstruction, compared to several state-of-the-art 3DGS-based methods. Project Web:https://github.com/TFWang-9527/PG-SAG.
January 2025. https://arxiv.org/abs/2501.01677
1 Deformable Gaussian Splatting for Efficient and High-Fidelity Reconstruction of Surgical Scenes Jiwei Shan,Zeyu Cai,Cheng-Tai Hsieh,Shing Shin Cheng,Hesheng Wang
AbstractEfficient and high-fidelity reconstruction of deformable surgical scenes is a critical yet challenging task. Building on recent advancements in 3D Gaussian splatting, current methods have seen significant improvements in both reconstruction quality and rendering speed. However, two major limitations remain: (1) difficulty in handling irreversible dynamic changes, such as tissue shearing, which are common in surgical scenes; and (2) the lack of hierarchical modeling for surgical scene deformation, which reduces rendering speed. To address these challenges, we introduce EH-SurGS, an efficient and high-fidelity reconstruction algorithm for deformable surgical scenes. We propose a deformation modeling approach that incorporates the life cycle of 3D Gaussians, effectively capturing both regular and irreversible deformations, thus enhancing reconstruction quality. Additionally, we present an adaptive motion hierarchy strategy that distinguishes between static and deformable regions within the surgical scene. This strategy reduces the number of 3D Gaussians passing through the deformation field, thereby improving rendering speed. Extensive experiments demonstrate that our method surpasses existing state-of-the-art approaches in both reconstruction quality and rendering speed. Ablation studies further validate the effectiveness and necessity of our proposed components. We will open-source our code upon acceptance of the paper.
January 2025. https://arxiv.org/abs/2501.01101
# Title Authors
AbstractAbstract
Announced URL

About

2025 Gaussian Splatting Paper List(Arxiv)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published