-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #266 from LAMPSPUC/basic_structural_ex
Add BasicStructuralExplanatory
- Loading branch information
Showing
5 changed files
with
228 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,7 @@ | ||
name = "StateSpaceModels" | ||
uuid = "99342f36-827c-5390-97c9-d7f9ee765c78" | ||
authors = ["raphaelsaavedra <[email protected]>, guilhermebodin <[email protected]>, mariohsouto"] | ||
version = "0.5.12" | ||
version = "0.5.13" | ||
|
||
[deps] | ||
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
@doc raw""" | ||
BasicStructuralExplanatory(y::Vector{Fl}, s::Int, X::Matrix{Fl}) where Fl | ||
It is defined by: | ||
```math | ||
\begin{gather*} | ||
\begin{aligned} | ||
y_{t} &= \mu_{t} + \gamma_{t} + \beta_{t, i}X_{t, i} \varepsilon_{t} \quad &\varepsilon_{t} \sim \mathcal{N}(0, \sigma^2_{\varepsilon})\\ | ||
\mu_{t+1} &= \mu_{t} + \nu_{t} + \xi_{t} \quad &\xi_{t} \sim \mathcal{N}(0, \sigma^2_{\xi})\\ | ||
\nu_{t+1} &= \nu_{t} + \zeta_{t} \quad &\zeta_{t} \sim \mathcal{N}(0, \sigma^2_{\zeta})\\ | ||
\gamma_{t+1} &= -\sum_{j=1}^{s-1} \gamma_{t+1-j} + \omega_{t} \quad & \omega_{t} \sim \mathcal{N}(0, \sigma^2_{\omega})\\ | ||
\beta_{t+1} &= \beta_{t} | ||
\end{aligned} | ||
\end{gather*} | ||
``` | ||
# Example | ||
```jldoctest | ||
julia> model = BasicStructuralExplanatory(rand(100), 12, rand(100, 2)) | ||
BasicStructuralExplanatory model | ||
``` | ||
# References | ||
* Durbin, James, & Siem Jan Koopman. (2012). "Time Series Analysis by State Space Methods: Second Edition." Oxford University Press. | ||
""" | ||
mutable struct BasicStructuralExplanatory <: StateSpaceModel | ||
hyperparameters::HyperParameters | ||
system::LinearUnivariateTimeVariant | ||
seasonality::Int | ||
results::Results | ||
exogenous::Matrix | ||
|
||
function BasicStructuralExplanatory(y::Vector{Fl}, s::Int, X::Matrix{Fl}) where Fl | ||
|
||
@assert length(y) == size(X, 1) | ||
|
||
num_observations = size(X, 1) | ||
num_exogenous = size(X, 2) | ||
|
||
Z = [vcat([1; 0; 1; zeros(Fl, s - 2)], X[t, :]) for t in 1:num_observations] | ||
T = [[ | ||
1 1 zeros(Fl, 1, s - 1) zeros(Fl, 1, num_exogenous) | ||
0 1 zeros(Fl, 1, s - 1) zeros(Fl, 1, num_exogenous) | ||
0 0 -ones(Fl, 1, s - 1) zeros(Fl, 1, num_exogenous) | ||
zeros(Fl, s - 2, 2) Matrix{Fl}(I, s - 2, s - 2) zeros(Fl, s - 2) zeros(Fl, 10, num_exogenous) | ||
zeros(Fl, num_exogenous, 13) Matrix{Fl}(I, num_exogenous, num_exogenous) | ||
] for _ in 1:num_observations] | ||
R = [[ | ||
Matrix{Fl}(I, 3, 3) | ||
zeros(Fl, s - 2, 3) | ||
zeros(num_exogenous, 3) | ||
] for _ in 1:num_observations] | ||
d = [zero(Fl) for _ in 1:num_observations] | ||
c = [zeros(Fl, size(T[1], 1)) for _ in 1:num_observations] | ||
H = [one(Fl) for _ in 1:num_observations] | ||
Q = [zeros(Fl, 3, 3) for _ in 1:num_observations] | ||
|
||
system = LinearUnivariateTimeVariant{Fl}(y, Z, T, R, d, c, H, Q) | ||
|
||
names = [["sigma2_ε", "sigma2_ξ", "sigma2_ζ", "sigma2_ω"]; ["β_$i" for i in 1:num_exogenous]] | ||
|
||
hyperparameters = HyperParameters{Fl}(names) | ||
|
||
return new(hyperparameters, system, s, Results{Fl}(), X) | ||
end | ||
end | ||
|
||
function default_filter(model::BasicStructuralExplanatory) | ||
Fl = typeof_model_elements(model) | ||
steadystate_tol = Fl(1e-5) | ||
a1 = zeros(Fl, num_states(model)) | ||
P1 = zeros(Fl, num_states(model), num_states(model)) | ||
P1[1:13, 1:13] = Fl(1e6) .* Matrix{Fl}(I, 13, 13) | ||
return UnivariateKalmanFilter(a1, P1, 13, steadystate_tol) | ||
end | ||
|
||
function initial_hyperparameters!(model::BasicStructuralExplanatory) | ||
Fl = typeof_model_elements(model) | ||
initial_hyperparameters = Dict{String,Fl}( | ||
"sigma2_ε" => one(Fl), | ||
"sigma2_ξ" => one(Fl), | ||
"sigma2_ζ" => one(Fl), | ||
"sigma2_ω" => one(Fl), | ||
) | ||
initial_exogenous = model.exogenous \ model.system.y | ||
for i in axes(model.exogenous, 2) | ||
initial_hyperparameters[get_beta_name(model, i)] = initial_exogenous[i] | ||
end | ||
set_initial_hyperparameters!(model, initial_hyperparameters) | ||
return model | ||
end | ||
|
||
function get_beta_name(model::BasicStructuralExplanatory, i::Int) | ||
return model.hyperparameters.names[i + 4] | ||
end | ||
|
||
function constrain_hyperparameters!(model::BasicStructuralExplanatory) | ||
for i in axes(model.exogenous, 2) | ||
constrain_identity!(model, get_beta_name(model, i)) | ||
end | ||
constrain_variance!(model, "sigma2_ε") | ||
constrain_variance!(model, "sigma2_ξ") | ||
constrain_variance!(model, "sigma2_ζ") | ||
constrain_variance!(model, "sigma2_ω") | ||
return model | ||
end | ||
|
||
function unconstrain_hyperparameters!(model::BasicStructuralExplanatory) | ||
for i in axes(model.exogenous, 2) | ||
unconstrain_identity!(model, get_beta_name(model, i)) | ||
end | ||
unconstrain_variance!(model, "sigma2_ε") | ||
unconstrain_variance!(model, "sigma2_ξ") | ||
unconstrain_variance!(model, "sigma2_ζ") | ||
unconstrain_variance!(model, "sigma2_ω") | ||
return model | ||
end | ||
|
||
function fill_model_system!(model::BasicStructuralExplanatory) | ||
H = get_constrained_value(model, "sigma2_ε") | ||
fill_H_in_time(model, H) | ||
for t in 1:length(model.system.Q) | ||
model.system.Q[t][1] = get_constrained_value(model, "sigma2_ξ") | ||
model.system.Q[t][5] = get_constrained_value(model, "sigma2_ζ") | ||
model.system.Q[t][end] = get_constrained_value(model, "sigma2_ω") | ||
end | ||
return model | ||
end | ||
|
||
function fill_model_filter!(filter::KalmanFilter, model::BasicStructuralExplanatory) | ||
for i in axes(model.exogenous, 2) | ||
filter.kalman_state.a[i + 13] = get_constrained_value(model, get_beta_name(model, i)) | ||
end | ||
return filter | ||
end | ||
|
||
|
||
function fill_H_in_time(model::BasicStructuralExplanatory, H::Fl) where Fl | ||
return fill_system_matrice_with_value_in_time(model.system.H, H) | ||
end | ||
|
||
function reinstantiate(model::BasicStructuralExplanatory, y::Vector{Fl}, X::Matrix{Fl}) where Fl | ||
return BasicStructuralExplanatory(y, model.seasonality, X) | ||
end | ||
|
||
has_exogenous(::BasicStructuralExplanatory) = true | ||
|
||
# BasicStructuralExplanatory requires a custom simulation | ||
|
||
function simulate_scenarios( | ||
model::BasicStructuralExplanatory, | ||
steps_ahead::Int, | ||
n_scenarios::Int, | ||
new_exogenous::Matrix{Fl}; | ||
filter::KalmanFilter=default_filter(model), | ||
) where Fl | ||
@assert steps_ahead == size(new_exogenous, 1) "new_exogenous must have the same dimension as steps_ahead" | ||
# Query the type of model elements | ||
fo = kalman_filter(model) | ||
last_state = fo.a[end] | ||
num_series = size(model.system.y, 2) | ||
|
||
scenarios = Array{Fl,3}(undef, steps_ahead, num_series, n_scenarios) | ||
for s in 1:n_scenarios | ||
scenarios[:, :, s] = simulate(model, last_state, steps_ahead, new_exogenous) | ||
end | ||
return scenarios | ||
end | ||
|
||
function simulate( | ||
model::BasicStructuralExplanatory, | ||
initial_state::Vector{Fl}, | ||
n::Int, | ||
new_exogenous::Matrix{Fl}; | ||
return_simulated_states::Bool=false, | ||
) where Fl | ||
sys = model.system | ||
m = size(sys.T[1], 1) | ||
y = Vector{Fl}(undef, n) | ||
alpha = Matrix{Fl}(undef, n + 1, m) | ||
# Sampling errors | ||
chol_H = sqrt(sys.H[1]) | ||
chol_Q = cholesky(sys.Q[1]) | ||
standard_ε = randn(n) | ||
standard_η = randn(n + 1, size(sys.Q[1], 1)) | ||
|
||
# The first state of the simulation is the update of a_0 | ||
alpha[1, :] .= initial_state | ||
sys.Z[1][14:end] .= new_exogenous[1, :] | ||
y[1] = dot(sys.Z[1], initial_state) + sys.d[1] + chol_H * standard_ε[1] | ||
alpha[2, :] = sys.T[1] * initial_state + sys.c[1] + sys.R[1] * chol_Q.L * standard_η[1, :] | ||
# Simulate scenarios | ||
for t in 2:n | ||
sys.Z[t][14:end] .= new_exogenous[t, :] | ||
y[t] = dot(sys.Z[t], alpha[t, :]) + sys.d[t] + chol_H * standard_ε[t] | ||
alpha[t + 1, :] = sys.T[t] * alpha[t, :] + sys.c[t] + sys.R[t] * chol_Q.L * standard_η[t, :] | ||
end | ||
|
||
if return_simulated_states | ||
return y, alpha[1:n, :] | ||
end | ||
return y | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
@testset "Basic Structural With Explanatory Model" begin | ||
@test has_fit_methods(BasicStructuralExplanatory) | ||
y = CSV.File(StateSpaceModels.AIR_PASSENGERS) |> DataFrame | ||
logap = log.(y.passengers) | ||
X = rand(length(logap), 2) | ||
model = BasicStructuralExplanatory(logap, 12, X) | ||
fit!(model) | ||
model.results | ||
# forecasting | ||
# For a fixed forecasting explanatory the variance must not decrease | ||
forec = forecast(model, ones(10, 2)) | ||
@test monotone_forecast_variance(forec) | ||
kf = kalman_filter(model); | ||
ks = kalman_smoother(model); | ||
a = get_predictive_state(kf) | ||
@test a[1, 14] ≈ a[end, 14] atol=1e-3 | ||
@test a[1, 15] ≈ a[end, 15] atol=1e-3 | ||
@test_throws AssertionError simulate_scenarios(model, 10, 1000, ones(5, 2)) | ||
scenarios = simulate_scenarios(model, 10, 1000, ones(10, 2)) | ||
test_scenarios_adequacy_with_forecast(forec, scenarios) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fb48925
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@JuliaRegistrator register
fb48925
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Registration pull request created: JuliaRegistries/General/35140
After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.
This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via: