Skip to content

Commit

Permalink
Build Torch from source (#4554)
Browse files Browse the repository at this point in the history
* Updated Torch to v1.10.2 (CPU-only)

* Removed Torch v1.4.0 which included Torch.jl wrapper
* Skipped Torch.jl wrapper
* With MKL dependency on MKL-platforms
* Using protoc v3.13.0 JLL.
* Added protoc as a build dependency to get correct version
* Not using ONNX dependency to get past protoc issue
* Added micromamba install of pyyaml and typing_extensions - needed for build.
* Using XNNPACK JLL dependency
* Added CPUInfo and PThreadPool dependencies
* Added SLEEF dependency
* Turned off some features explicitly to silence some configure warnings
* Not using NNPACK, and QNNPACK, and limited PYTORCH_QNNPACK to x86_64.
* Disabled use of breakpad on aarch64-linux-gnu
* Enabled configure on Windows via patch and disabling breakpad
* Disabled use of TensorPipe on linux-musl
* Excluded unsupported powerpc64le and i686-windows platforms
* Disabled kineto for w64 and freebsd
* Disabled breakpad for FreeBSD
* Disabled use of MKLDNN on macOS
* Added Gloo dependency - to aid linux-musl
* Disabled MKLDNN for linux-musl
* Disabled FreeBSD as Clang v12 crashes
* Disabled MKLDNN for w64-mingw32
* Using MKL, BLIS, or OpenBLAS + LAPACK - preferring MKL or BLIS
  * Restricted use of LAPACK to OpenBLAS platforms
  * Set preferred BLAS for armv6l-linux-gnu
* Disabled FBGEMM for x86_64-w64-mingw32
* Added MKL_Headers as dependency
  * Disabled MKL for Windows as CMake cannot find MKL
* Optimized git submodule update
* Added note about disabling MKLDNN for x86_64-apple-darwin
* Fixed a few warnings related to FBGEMM
* Fixed windows warning related to TensorPipe
* Disabled Metal to silence warning that it is only used on iOS
* Silence cmake developer warnings
* Disabled linux-musl and Windows
* Added additional library product libtorch_cpu
* Added SO version to libraries and disabled numpy
* Set GLIBCXX_USE_CXX11_ABI - like official libtorch builds.
* Added platform expansion for C++ string ABIs
* Added dep build versions and/or compat
* Disabled ARM 32-bit platforms
* Fixup for FBGEMM warning on aarch64-apple-darwin

* Added dependencies graph for pytorch wrt. xnnpack, pthreadpool and cpuinfo

* Added CUDA 10.2 and CUDA 11.3 x86_64-linux-gnu platforms

* Using CUDA_full v11.3 to use v11.3.1+1 which includes Thrust library.
* Using CUDNN v8.2.4 for build version (similar to ONNXRuntime)
* Added patch for cmake to find CUDA
* Set CUDACXX to make cmake find CUDA
* Added CUDA libraries manually - and enabled CUDNN
* Added double-triple configure hack to make CUDA configure - To get past TRY_RUN for CUDA
* Added CUDA headers to CMAKE_INCLUDE_PATH
* Additional fixes for CUDA - and CUB
* Set TMPDIR for nvcc
* Added additional CUDA libraries
  • Loading branch information
stemann authored Sep 13, 2022
1 parent d6a5224 commit 74872fc
Show file tree
Hide file tree
Showing 4 changed files with 341 additions and 33 deletions.
272 changes: 239 additions & 33 deletions T/Torch/build_tarballs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,60 +3,266 @@
using BinaryBuilder, Pkg

name = "Torch"
version = v"1.4.0"
version = v"1.10.2"

# Collection of sources required to complete build
sources = [
GitSource("https://github.com/dhairyagandhi96/Torch.jl.git", "85bd08d39e7fba29ec4a643f60dd006ed8be8ede"),
ArchiveSource("https://download.pytorch.org/libtorch/cu101/libtorch-cxx11-abi-shared-with-deps-1.4.0.zip", "f214bfde532877aa5d4e0803e51a28fa8edd97b6a44b6615f75a70352b6b542e"),
ArchiveSource("https://github.com/JuliaGPU/CUDABuilder/releases/download/v0.3.0/CUDNN+CUDA10.1.v7.6.5.x86_64-linux-gnu.tar.gz", "79de5b5085a33bc144b87028e998a1d295a15c3424d6d45b25defe500f616974", unpack_target = "cudnn"),
GitSource("https://github.com/pytorch/pytorch.git", "71f889c7d265b9636b93ede9d651c0a9c4bee191"),
FileSource("https://micromamba.snakepit.net/api/micromamba/linux-64/0.21.1", "c907423887b43bec4e8b24f17471262c8087b7095683f41dcef4a4e24e9a3bbd"; filename = "micromamba.tar.bz2"),
ArchiveSource("https://github.com/JuliaBinaryWrappers/CUDA_full_jll.jl/releases/download/CUDA_full-v10.2.89%2B5/CUDA_full.v10.2.89.x86_64-linux-gnu.tar.gz", "60e6f614db3b66d955b7e6aa02406765e874ff475c69e2b4a04eb95ba65e4f3b"; unpack_target = "CUDA_full.v10.2"),
ArchiveSource("https://github.com/JuliaBinaryWrappers/CUDA_full_jll.jl/releases/download/CUDA_full-v11.3.1%2B1/CUDA_full.v11.3.1.x86_64-linux-gnu.tar.gz", "9ae00d36d39b04e8e99ace63641254c93a931dcf4ac24c8eddcdfd4625ab57d6"; unpack_target = "CUDA_full.v11.3"),
DirectorySource("./bundled"),
]

# Bash recipe for building across all platforms
script = raw"""
cd $WORKSPACE/srcdir
mv cudnn $prefix
mv libtorch/share/* $prefix/share/
mv libtorch/lib/* $prefix/lib/
rm -r libtorch/lib
rm -r libtorch/share
mv libtorch/* $prefix
rm -r libtorch
mkdir -p /usr/local/cuda/lib64
cd /usr/local/cuda/lib64
ln -s ${prefix}/cuda/lib64/libcudart.so libcudart.so
ln -s ${prefix}/cuda/lib64/libnvToolsExt.so libnvToolsExt.so
cd $WORKSPACE/srcdir/Torch.jl/build
mkdir build && cd build
cmake -DCMAKE_PREFIX_PATH=$prefix -DTorch_DIR=$prefix/share/cmake/Torch -DCUDA_TOOLKIT_ROOT_DIR=$prefix/cuda ..
cmake --build .
mkdir -p "${libdir}"
cp -r $WORKSPACE/srcdir/Torch.jl/build/build/*.${dlext} "${libdir}"
rm -rf $prefix/cuda
install_license ${WORKSPACE}/srcdir/Torch.jl/LICENSE
mkdir micromamba
cd micromamba
tar xfj ../micromamba.tar.bz2
export PATH=$PATH:$WORKSPACE/srcdir/micromamba/bin
./bin/micromamba shell init -s bash -p ~/micromamba
source ~/.bashrc
micromamba activate
micromamba install -y python=3.9 pyyaml typing_extensions -c conda-forge
cd $WORKSPACE/srcdir/pytorch
atomic_patch -p1 ../patches/pytorch-aten-qnnpack-cmake-windows.patch
cmake_extra_args=""
include_paths=""
if [[ $bb_full_target == *cxx11* ]]; then
cmake_extra_args+="-DGLIBCXX_USE_CXX11_ABI=1 "
fi
if [[ $target == i686-linux-gnu*
|| $target == x86_64-linux-gnu*
|| $target == x86_64-apple-darwin*
]]; then
cmake_extra_args+="-DBLAS=MKL "
elif [[ $target == aarch64-linux-gnu*
|| $bb_full_target == armv7l-linux-gnu*
|| $target == x86_64-linux-musl*
|| $target == x86_64-unknown-freebsd*
|| $target == aarch64-apple-darwin*
|| $target == i686-w64-mingw32*
|| $target == x86_64-w64-mingw32*
]]; then
cmake_extra_args+="-DBLAS=BLIS "
elif [[ $bb_full_target == armv6l-linux-gnu* ]]; then
cmake_extra_args+="-DBLAS=OpenBLAS "
fi
if [[ $target == x86_64* ]]; then # Restricting PYTORCH_QNNPACK to x86_64: Adapted from https://salsa.debian.org/deeplearning-team/pytorch/-/blob/master/debian/rules
cmake_extra_args+="-DUSE_PYTORCH_QNNPACK=ON "
else
cmake_extra_args+="-DUSE_PYTORCH_QNNPACK=OFF "
fi
if [[ $target == aarch64-linux-gnu* # Disabled use of breakpad on aarch64-linux-gnu: Fails to build embedded breakpad library.
|| $target == *-w64-mingw32* # Disabling breakpad enables configure on Windows - in combination with pytorch-aten-qnnpack-cmake-windows.patch
|| $target == *-freebsd*
]]; then
cmake_extra_args+="-DUSE_BREAKPAD=OFF "
else
cmake_extra_args+="-DUSE_BREAKPAD=ON "
fi
if [[ $target == *-linux-musl* # Disabled use of TensorPipe on linux-musl: Fails to build embedded TensorPipe library.
|| $target == *-w64-mingw32* # TensorPipe cannot be used on Windows
]]; then
cmake_extra_args+="-DUSE_TENSORPIPE=OFF "
else
cmake_extra_args+="-DUSE_TENSORPIPE=ON "
fi
if [[ $target == *-w64-* || $target == *-freebsd* ]]; then
cmake_extra_args+="-DUSE_KINETO=OFF "
fi
# Gloo is only available for 64-bit x86_64 or aarch64 - and cmake currently cannot find Gloo on *-linux-gnu
if [[ $target != arm-* && $target == *-linux-musl* ]]; then
cmake_extra_args+="-DUSE_SYSTEM_GLOO=ON "
fi
if [[ $target == aarch64-* # A compiler with AVX512 support is required for FBGEM
|| $target == arm-* # A compiler with AVX512 support is required for FBGEM
|| $target == i686-* # x64 operating system is required for FBGEMM
|| $target == x86_64-w64-mingw32*
]]; then
cmake_extra_args+="-DUSE_FBGEMM=OFF -DUSE_FAKELOWP=OFF "
fi
if [[ $target == x86_64-apple-darwin* # Fails to compile: /workspace/srcdir/pytorch/third_party/ideep/mkl-dnn/src/cpu/x64/jit_avx512_core_amx_conv_kernel.cpp:483:43: error: use of undeclared identifier 'noU';
|| $target == *-w64-mingw32*
|| $target == *-linux-musl* ]]; then
cmake_extra_args+="-DUSE_MKLDNN=OFF "
fi
if [[ $bb_full_target == *cuda* ]]; then
cuda_version=`echo $bb_full_target | sed -E -e 's/.*cuda\+([0-9]+\.[0-9]+).*/\1/'`
cuda_version_major=`echo $cuda_version | cut -d . -f 1`
cuda_version_minor=`echo $cuda_version | cut -d . -f 2`
cuda_full_path="$WORKSPACE/srcdir/CUDA_full.v$cuda_version/cuda"
export PATH=$PATH:$cuda_full_path/bin
export CUDACXX=$cuda_full_path/bin/nvcc
export CUDAHOSTCXX=$CXX
mkdir $WORKSPACE/tmpdir
export TMPDIR=$WORKSPACE/tmpdir
cmake_extra_args+="\
-DUSE_CUDA=ON \
-DUSE_CUDNN=ON \
-DUSE_MAGMA=ON \
-DCUDA_TOOLKIT_ROOT_DIR=$cuda_full_path \
-DCUDA_CUDART_LIBRARY=$cuda_full_path/lib64/libcudart.$dlext \
-DCMAKE_CUDA_FLAGS='-cudart shared' \
-DCUDA_cublas_LIBRARY=$cuda_full_path/lib64/libcublas.$dlext \
-DCUDA_cufft_LIBRARY=$cuda_full_path/lib64/libcufft.$dlext \
-DCUDA_curand_LIBRARY=$cuda_full_path/lib64/libcurand.$dlext \
-DCUDA_cusolver_LIBRARY=$cuda_full_path/lib64/libcusolver.$dlext \
-DCUDA_cusparse_LIBRARY=$cuda_full_path/lib64/libcusparse.$dlext \
-DCUDA_TOOLKIT_INCLUDE=$includedir;$cuda_full_path/include \
-DCUB_INCLUDE_DIR=$WORKSPACE/srcdir/pytorch/third_party/cub "
include_paths+=":$cuda_full_path/include"
micromamba install -y magma-cuda${cuda_version_major}${cuda_version_minor} -c pytorch
git submodule update --init \
third_party/cub \
third_party/cudnn_frontend
else
cmake_extra_args+="-DUSE_CUDA=OFF -DUSE_MAGMA=OFF "
fi
git submodule update --init \
third_party/FP16 \
third_party/FXdiv \
third_party/eigen \
third_party/fbgemm \
third_party/fmt \
third_party/foxi \
third_party/gloo \
third_party/kineto \
third_party/onnx \
third_party/psimd \
third_party/tensorpipe
git submodule update --init --recursive \
third_party/breakpad \
third_party/ideep
cd third_party/fbgemm && git submodule update --init third_party/asmjit && cd ../..
cd third_party/tensorpipe && git submodule update --init third_party/libnop third_party/libuv && cd ../..
mkdir build
cd build
configure() {
cmake \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=$prefix \
-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TARGET_TOOLCHAIN} \
-DCMAKE_INCLUDE_PATH=$include_paths \
-DBUILD_CUSTOM_PROTOBUF=OFF \
-DBUILD_PYTHON=OFF \
-DPYTHON_EXECUTABLE=`which python3` \
-DBUILD_SHARED_LIBS=ON \
-DHAVE_SOVERSION=ON \
-DUSE_METAL=OFF \
-DUSE_MPI=OFF \
-DUSE_NCCL=OFF \
-DUSE_NNPACK=OFF \
-DUSE_NUMA=OFF \
-DUSE_NUMPY=OFF \
-DUSE_QNNPACK=OFF \
-DUSE_SYSTEM_CPUINFO=ON \
-DUSE_SYSTEM_PTHREADPOOL=ON \
-DUSE_SYSTEM_SLEEF=ON \
-DUSE_SYSTEM_XNNPACK=ON \
-DPROTOBUF_PROTOC_EXECUTABLE=$host_bindir/protoc \
-DCAFFE2_CUSTOM_PROTOC_EXECUTABLE=$host_bindir/protoc \
-Wno-dev \
$cmake_extra_args \
..
}
if [[ $bb_full_target != *cuda* ]]; then
configure
else
configure
configure || configure
fi
cmake --build . -- -j $nproc
make install
install_license ../LICENSE
"""

# These are the platforms we will build for by default, unless further
# platforms are passed in on the command line
platforms = [
Platform("x86_64", "linux"; libc="glibc", cxxstring_abi = "cxx11"),
platforms = supported_platforms()
filter!(p -> !(Sys.islinux(p) && libc(p) == "musl"), platforms) # musl fails due to conflicting declaration of C function ‘void __assert_fail(const char*, const char*, int, const char*) - between /opt/x86_64-linux-musl/x86_64-linux-musl/include/c++/8.1.0/cassert:44 and /opt/x86_64-linux-musl/x86_64-linux-musl/sys-root/usr/include/assert.h
filter!(!Sys.iswindows, platforms) # ONNX does not support cross-compiling for w64-mingw32 on linux
filter!(p -> arch(p) != "armv6l", platforms) # armv6l is not supported by XNNPACK
filter!(p -> arch(p) != "armv7l", platforms) # armv7l is not supported by XNNPACK
filter!(p -> arch(p) != "powerpc64le", platforms) # PowerPC64LE is not supported by XNNPACK
filter!(!Sys.isfreebsd, platforms) # Build fails: Clang v12 crashes compiling aten/src/ATen/native/cpu/MaxUnpoolKernel.cpp.

mkl_platforms = [
Platform("x86_64", "Linux"),
Platform("i686", "Linux"),
Platform("x86_64", "MacOS"),
Platform("x86_64", "Windows"),
]

blis_platforms = filter(p -> p mkl_platforms, [
Platform("x86_64", "linux"; libc = "glibc"),
Platform("aarch64", "linux"; libc = "glibc"),
Platform("armv7l", "linux"; call_abi = "eabihf", libc = "glibc"),
Platform("x86_64", "linux"; libc = "musl"),
Platform("x86_64", "freebsd"),
Platform("aarch64", "macos"),
Platform("x86_64", "macos"),
Platform("x86_64", "windows"),
])

openblas_platforms = filter(p -> p union(mkl_platforms, blis_platforms), platforms)

cuda_platforms = [
Platform("x86_64", "Linux"; cuda = "10.2"),
Platform("x86_64", "Linux"; cuda = "11.3"),
]
for p in cuda_platforms
push!(platforms, p)
end

platforms = expand_cxxstring_abis(platforms)
mkl_platforms = expand_cxxstring_abis(mkl_platforms)
blis_platforms = expand_cxxstring_abis(blis_platforms)
openblas_platforms = expand_cxxstring_abis(openblas_platforms)
cuda_platforms = expand_cxxstring_abis(cuda_platforms)

# The products that we will ensure are always built
products = [
LibraryProduct("libdoeye_caml", :libdoeye_caml, dont_dlopen = true),
LibraryProduct("libtorch", :libtorch, dont_dlopen = true),
LibraryProduct(["libtorch", "torch"], :libtorch),
LibraryProduct(["libtorch_cpu", "torch_cpu"], :libtorch_cpu),
]

# Dependencies that must be installed before this package can be built
dependencies = [
BuildDependency(PackageSpec(name="CUDA_full_jll", version=v"10.1.243")),
Dependency(PackageSpec(name="CompilerSupportLibraries_jll")),
Dependency(PackageSpec(name="CompilerSupportLibraries_jll", uuid="e66e0078-7015-5450-92f7-15fbd957f2ae")),
Dependency("blis_jll"; platforms = blis_platforms),
Dependency("CPUInfo_jll"; compat = "0.0.20201217"),
Dependency("CUDNN_jll", v"8.2.4"; compat = "8", platforms = cuda_platforms),
Dependency("Gloo_jll"; compat = "0.0.20210521", platforms = filter(p -> nbits(p) == 64, platforms)),
Dependency("LAPACK_jll"; platforms = openblas_platforms),
Dependency("MKL_jll"; platforms = mkl_platforms),
BuildDependency("MKL_Headers_jll"; platforms = mkl_platforms),
Dependency("OpenBLAS_jll"; platforms = openblas_platforms),
Dependency("PThreadPool_jll"; compat = "0.0.20210414"),
Dependency("SLEEF_jll", v"3.5.2"; compat = "3"),
# Dependency("TensorRT_jll"; platforms = cuda_platforms), # Building with TensorRT is not supported: https://github.com/pytorch/pytorch/issues/60228
Dependency("XNNPACK_jll"; compat = "0.0.20210622"),
BuildDependency(PackageSpec("protoc_jll", Base.UUID("c7845625-083e-5bbe-8504-b32d602b7110"), v"3.13.0")),
HostBuildDependency(PackageSpec("protoc_jll", Base.UUID("c7845625-083e-5bbe-8504-b32d602b7110"), v"3.13.0")),
]

# Build the tarballs, and possibly a `build.jl` as well.
build_tarballs(ARGS, name, version, sources, script, platforms, products, dependencies; preferred_gcc_version = v"7.1.0")
build_tarballs(ARGS, name, version, sources, script, platforms, products, dependencies;
preferred_gcc_version = v"8",
julia_compat = "1.6")
13 changes: 13 additions & 0 deletions T/Torch/bundled/patches/pytorch-aten-qnnpack-cmake-windows.patch
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
diff --git a/aten/src/ATen/native/quantized/cpu/qnnpack/CMakeLists.txt b/aten/src/ATen/native/quantized/cpu/qnnpack/CMakeLists.txt
index 3901f735a4..5a742c793d 100644
--- a/aten/src/ATen/native/quantized/cpu/qnnpack/CMakeLists.txt
+++ b/aten/src/ATen/native/quantized/cpu/qnnpack/CMakeLists.txt
@@ -61,7 +61,7 @@ endif()

if(NOT CMAKE_SYSTEM_NAME)
message(FATAL_ERROR "CMAKE_SYSTEM_NAME not defined")
-elseif(NOT CMAKE_SYSTEM_NAME MATCHES "^(Darwin|Linux|Android)$")
+elseif(NOT CMAKE_SYSTEM_NAME MATCHES "^(Darwin|Linux|Android|Windows)$")
message(FATAL_ERROR "Unrecognized CMAKE_SYSTEM_NAME = ${CMAKE_SYSTEM_NAME}")
endif()

13 changes: 13 additions & 0 deletions T/Torch/bundled/patches/pytorch-cmake-find-cuda.patch
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
diff --git a/cmake/public/cuda.cmake b/cmake/public/cuda.cmake
index 7ba2bb6d4c..476f65f99c 100644
--- a/cmake/public/cuda.cmake
+++ b/cmake/public/cuda.cmake
@@ -26,7 +26,7 @@ if(NOT MSVC)
endif()

# Find CUDA.
-find_package(CUDA)
+enable_language(CUDA)
if(NOT CUDA_FOUND)
message(WARNING
"Caffe2: CUDA cannot be found. Depending on whether you are building "
Loading

0 comments on commit 74872fc

Please sign in to comment.