Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Faster imsersenne #94

Open
wants to merge 9 commits into
base: main
Choose a base branch
from
59 changes: 56 additions & 3 deletions src/Primes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -453,15 +453,68 @@ true
```
"""
function ismersenneprime(M::Integer; check::Bool = true)
d = ndigits(M, base=2)
if check
d = ndigits(M, base=2)
M >= 0 && isprime(d) && (M >> d == 0) ||
throw(ArgumentError("The argument given is not a valid Mersenne Number (`M = 2^p - 1`)."))
end
M < 7 && return M == 3
# If d is large, it is worth it to try to wead out easy cases
d > 10007 && has_small_factor_mersenne(M) && return false
return ll_primecheck(M)
end

# Prime sieve for numbers of the form ax+b
# Filters out all composites with divisors less than 2^16
function linear_sieve(a,b,max)
arr = falses(div((max-b),a))
sqrtmax = isqrt(max)
for p in PRIMES
p > sqrtmax && break
g,x,_ = gcdx(a, p)
if g != 1
if mod(b,p) == 0
return typeof(max)[]
end
continue
end
# x*a = 1 mod p
k = mod(-b*x, p)
arr[k+1:p:end] .= true
# don't set p as composite. (only applies if arr contains elements as small as p)
if a*k+b == p
arr[k+1]=false
end
end
if b == 1
arr[1] = true
end
return (a*(i-1)+b for (i,x) in enumerate(arr) if !x)
end

# Returns whether M=2^d-1 has a small factor
# For each factor, checks if 2^d = 1 \pmod factor.
# Uses the fact that all factors must be of the form
# 2kd+1 for integer k
function has_small_factor_mersenne(M::Integer)
d = ndigits(M, base=2)
for factor in linear_sieve(2 * d, 1, Int64(2)^40)
factor & 7 in (3,5) && continue
if powermod(2, d, factor) == 1
return true
end
end
return false
end

# Calculates n % 2^d-1 where M=2**d-1
function mod_mersenne(n, d, M)
while n > M
n = (n & M) + (n >> d)
end
return n != M ? n : 0
end

"""
isrieselprime(k::Integer, Q::Integer) -> Bool

Expand Down Expand Up @@ -496,7 +549,7 @@ function ll_primecheck(X::Integer, s::Integer = 4)
S, N = BigInt(s), BigInt(ndigits(X, base=2))
X < 7 && throw(ArgumentError("The condition X ≥ 7 must be met."))
for i in 1:(N - 2)
S = (S^2 - 2) % X
S = mod_mersenne((S^2 - 2), N, X)
end
return S == 0
end
Expand All @@ -518,7 +571,7 @@ function totient(f::Factorization{T}) where T <: Integer
end
result
end

0
"""
totient(n::Integer) -> Integer

Expand Down
2 changes: 2 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -242,6 +242,8 @@ end
# Lucas-Lehmer
@test !ismersenneprime(2047)
@test ismersenneprime(8191)
# With has_small_factor_mersenne this should only take about .01 seconds
@test !ismersenneprime(big(2)^1257869-1)
@test_throws ArgumentError ismersenneprime(9)
@test_throws ArgumentError ismersenneprime(9, check=true)
# test the following does not throw
Expand Down