Skip to content

Julia wrapper of the python library CatBoost for boosted decision trees

License

Notifications You must be signed in to change notification settings

JuliaAI/CatBoost.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CatBoost.jl

Build Status CodeCov

Julia interface to CatBoost. This library is a wrapper CatBoost's Python package via PythonCall.jl.

For a nice introduction to the package, see the examples.

Installation

This package is available in the Julia General Registry. You can install it with either of the following commands:

pkg> add CatBoost
julia> using Pkg; Pkg.add("CatBoost")

Example

module Regression

using CatBoost
using PythonCall

train_data = PyList([[1, 4, 5, 6], [4, 5, 6, 7], [30, 40, 50, 60]])
eval_data = PyList([[2, 4, 6, 8], [1, 4, 50, 60]])
train_labels = PyList([10, 20, 30])

# Initialize CatBoostRegressor
model = CatBoostRegressor(iterations = 2, learning_rate = 1, depth = 2)

# Fit model
fit!(model, train_data, train_labels)

# Get predictions
preds = predict(model, eval_data)

end # module

MLJ Example

module Regression

using CatBoost.MLJCatBoostInterface
using DataFrames
using MLJBase

# Initialize data
train_data = DataFrame([[1, 4, 30], [4, 5, 40], [5, 6, 50], [6, 7, 60]], :auto)
train_labels = [10.0, 20.0, 30.0]
eval_data = DataFrame([[2, 1], [4, 4], [6, 50], [8, 60]], :auto)

# Initialize CatBoostClassifier
model = CatBoostRegressor(; iterations=2, learning_rate=1.0, depth=2)
mach = machine(model, train_data, train_labels)

# Fit model
MLJBase.fit!(mach)

# Get predictions
preds_class = MLJBase.predict(mach, eval_data)

end # module

Restricting Python catboost version

By default, CatBoost.jl installs the latest compatible version of catboost (version >=1.1) in your current CondaPkg.jl environment. To install a specific version, create a CondaPkg.toml file using CondaPkg.jl. Below is an example for specifying catboost version v1.1:

using CondaPkg
CondaPkg.add("catboost"; version="=1.1")

This will create a CondaPkg.toml file in your current envrionment with the restricted catboost version. For more information on managing Conda environments with CondaPkg.jl, refer to the official documentation.

About

Julia wrapper of the python library CatBoost for boosted decision trees

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages