CompressAI-Vision helps you to develop, test and evaluate compression models with standardized tests in the context of compression methods optimized for machine tasks algorithms such as Neural-Network (NN)-based detectors.
It currently focuses on two types of pipeline:
-
Video compression for remote inference (
compressai-remote-inference
), which corresponds to the MPEG "Video Coding for Machines" (VCM) activity. -
Split inference (
compressai-split-inference
), which includes an evaluation framework for compressing intermediate features produced in the context of split models. The software supports all thepipelines considered in the related MPEG activity: "Feature Compression for Machines" (FCM).
-
Detectron2 for Object Detection (Faster-RCNN) and Instance Segmentation (Mask-RCNN)
-
JDE for Object Tracking
-
YOLOX-Darknet53 for Object Detection
-
MMPOSE RTMO for Pose Estimation (Bottom Up)
A complete documentation is provided here, including installation, CLI usage, as well as tutorials.
The CompressAI library providing learned compresion modules is available as a submodule. It can be initilized by running:
git submodule update --init --recursive
Note: the installation scripts documented below installs compressai from source expects the submodule to be populated.
CompressAI-Vision can be installed using a virtual environment and pip or using uv.
To get started locally and install the development version of CompressAI-Vision, first create a virtual environment with python==3.8:
python3.8 -m venv venv
source ./venv/bin/activate
pip install -U pip
First, if you want to manually export CUDA related paths, please source (e.g. for CUDA 11.8):
bash scripts/env_cuda.sh 11.8
Then, please run:
bash scripts/install.sh
For more otions, check:
bash scripts/install.sh --help
NOTE 1: install.sh gives you the possibility to install vision models' source and weights at specified locations so that mutliple versions of compressai-vision can point to the same installed vision models
NOTE 2: the downlading of JDE pretrained weights might fail. Check that the size of following file is ~558MB. path/to/weights/jde/jde.1088x608.uncertainty.pt The file can be downloaded at the following link (in place of the above file path): "https://docs.google.com/uc?export=download&id=1nlnuYfGNuHWZztQHXwVZSL_FvfE551pA"
Within the root folder of compressai-vision:
bash scripts/install_uv.sh
Note: Make sure you pin the desired installed python version before, e.g.,
uv python pin 3.8
To run split-inference pipelines, please use the following command:
compressai-split-inference --help
Note that the following entry point is kept for backward compability. It runs split inference as well.
compressai-vision-eval --help
For example for testing a full split inference pipelines without any compression, run
compressai-vision-eval --config-name=eval_split_inference_example
For remote inference (MPEG VCM-like) pipelines, please run:
compressai-remote-inference --help
Please check other configuration examples provided in ./cfgs as well as examplary scripts in ./scripts
Test data related to the MPEG FCM activity can be found in ./data/mpeg-fcm/
After your dev, you can run (and adapt) test scripts from the scripts/tests directory. Please check [scripts/tests/README.md] for more details
Code is formatted using black and isort. To format code, type:
make code-format
Static checks with those same code formatters can be run manually with:
make static-analysis
To produce the html documentation, from docs/, run:
make html
To check the pages locally, open docs/_build/html/index.html
CompressAI-Vision is licensed under the BSD 3-Clause Clear License
Fabien Racapé, Hyomin Choi, Eimran Eimon, Sampsa Riikonen, Jacky Yat-Hong Lam