Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 4 additions & 16 deletions mart/models/modular.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,19 +134,15 @@ def training_step(self, batch, batch_idx):
for log_name, output_key in self.training_step_log.items():
self.log(f"training/{log_name}", output[output_key])

assert "loss" in output
return output

def training_step_end(self, output):
if self.training_metrics is not None:
# Some models only return loss in the training mode.
if self.output_preds_key not in output or self.output_target_key not in output:
raise ValueError(
f"You have specified training_metrics, but the model does not return {self.output_preds_key} or {self.output_target_key} during training. You can either nullify training_metrics or configure the model to return {self.output_preds_key} and {self.output_target_key} in the training output."
)
self.training_metrics(output[self.output_preds_key], output[self.output_target_key])
loss = output.pop(self.output_loss_key)
return loss

return output[self.output_loss_key]

def training_epoch_end(self, outputs):
if self.training_metrics is not None:
Expand All @@ -168,13 +164,9 @@ def validation_step(self, batch, batch_idx):
for log_name, output_key in self.validation_step_log.items():
self.log(f"validation/{log_name}", output[output_key])

return output

def validation_step_end(self, output):
self.validation_metrics(output[self.output_preds_key], output[self.output_target_key])

# I don't know why this is required to prevent CUDA memory leak in validaiton and test. (Not required in training.)
output.clear()
return None

def validation_epoch_end(self, outputs):
metrics = self.validation_metrics.compute()
Expand All @@ -194,13 +186,9 @@ def test_step(self, batch, batch_idx):
for log_name, output_key in self.test_step_log.items():
self.log(f"test/{log_name}", output[output_key])

return output

def test_step_end(self, output):
self.test_metrics(output[self.output_preds_key], output[self.output_target_key])

# I don't know why this is required to prevent CUDA memory leak in validaiton and test. (Not required in training.)
output.clear()
return None

def test_epoch_end(self, outputs):
metrics = self.test_metrics.compute()
Expand Down