Skip to content

Add support for block sparse QR decomposition #117

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
May 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "BlockSparseArrays"
uuid = "2c9a651f-6452-4ace-a6ac-809f4280fbb4"
authors = ["ITensor developers <[email protected]> and contributors"]
version = "0.6.1"
version = "0.6.2"

[deps]
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
Expand Down
1 change: 1 addition & 0 deletions src/BlockSparseArrays.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,5 +46,6 @@ include("BlockArraysSparseArraysBaseExt/BlockArraysSparseArraysBaseExt.jl")
# factorizations
include("factorizations/svd.jl")
include("factorizations/truncation.jl")
include("factorizations/qr.jl")

end
221 changes: 221 additions & 0 deletions src/factorizations/qr.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
using MatrixAlgebraKit: MatrixAlgebraKit, qr_compact!, qr_full!

# TODO: this is a hardcoded for now to get around this function not being defined in the
# type domain
function default_blocksparse_qr_algorithm(A::AbstractMatrix; kwargs...)
blocktype(A) <: StridedMatrix{<:LinearAlgebra.BLAS.BlasFloat} ||
error("unsupported type: $(blocktype(A))")
alg = MatrixAlgebraKit.LAPACK_HouseholderQR(; kwargs...)
return BlockPermutedDiagonalAlgorithm(alg)
end
function MatrixAlgebraKit.default_algorithm(
::typeof(qr_compact!), A::AbstractBlockSparseMatrix; kwargs...
)
return default_blocksparse_qr_algorithm(A; kwargs...)
end
function MatrixAlgebraKit.default_algorithm(
::typeof(qr_full!), A::AbstractBlockSparseMatrix; kwargs...
)
return default_blocksparse_qr_algorithm(A; kwargs...)
end

function similar_output(
::typeof(qr_compact!), A, R_axis, alg::MatrixAlgebraKit.AbstractAlgorithm
)
Q = similar(A, axes(A, 1), R_axis)
R = similar(A, R_axis, axes(A, 2))
return Q, R
end

function similar_output(
::typeof(qr_full!), A, R_axis, alg::MatrixAlgebraKit.AbstractAlgorithm
)
Q = similar(A, axes(A, 1), R_axis)
R = similar(A, R_axis, axes(A, 2))
return Q, R
end

function MatrixAlgebraKit.initialize_output(
::typeof(qr_compact!), A::AbstractBlockSparseMatrix, alg::BlockPermutedDiagonalAlgorithm
)
bm, bn = blocksize(A)
bmn = min(bm, bn)

brows = eachblockaxis(axes(A, 1))
bcols = eachblockaxis(axes(A, 2))
r_axes = similar(brows, bmn)

# fill in values for blocks that are present
bIs = collect(eachblockstoredindex(A))
browIs = Int.(first.(Tuple.(bIs)))
bcolIs = Int.(last.(Tuple.(bIs)))
for bI in eachblockstoredindex(A)
row, col = Int.(Tuple(bI))
len = minimum(length, (brows[row], bcols[col]))
r_axes[col] = brows[row][Base.OneTo(len)]
end

# fill in values for blocks that aren't present, pairing them in order of occurence
# this is a convention, which at least gives the expected results for blockdiagonal
emptyrows = setdiff(1:bm, browIs)
emptycols = setdiff(1:bn, bcolIs)
for (row, col) in zip(emptyrows, emptycols)
len = minimum(length, (brows[row], bcols[col]))
r_axes[col] = brows[row][Base.OneTo(len)]
end

r_axis = mortar_axis(r_axes)
Q, R = similar_output(qr_compact!, A, r_axis, alg)

# allocate output
for bI in eachblockstoredindex(A)
brow, bcol = Tuple(bI)
Q[brow, bcol], R[bcol, bcol] = MatrixAlgebraKit.initialize_output(
qr_compact!, @view!(A[bI]), alg.alg
)
end

# allocate output for blocks that aren't present -- do we also fill identities here?
for (row, col) in zip(emptyrows, emptycols)
@view!(Q[Block(row, col)])
end

return Q, R
end

function MatrixAlgebraKit.initialize_output(
::typeof(qr_full!), A::AbstractBlockSparseMatrix, alg::BlockPermutedDiagonalAlgorithm
)
bm, bn = blocksize(A)

brows = eachblockaxis(axes(A, 1))
r_axes = copy(brows)

# fill in values for blocks that are present
bIs = collect(eachblockstoredindex(A))
browIs = Int.(first.(Tuple.(bIs)))
bcolIs = Int.(last.(Tuple.(bIs)))
for bI in eachblockstoredindex(A)
row, col = Int.(Tuple(bI))
r_axes[col] = brows[row]
end

# fill in values for blocks that aren't present, pairing them in order of occurence
# this is a convention, which at least gives the expected results for blockdiagonal
emptyrows = setdiff(1:bm, browIs)
emptycols = setdiff(1:bn, bcolIs)
for (row, col) in zip(emptyrows, emptycols)
r_axes[col] = brows[row]
end
for (i, k) in enumerate((length(emptycols) + 1):length(emptyrows))
r_axes[bn + i] = brows[emptyrows[k]]
end

r_axis = mortar_axis(r_axes)
Q, R = similar_output(qr_full!, A, r_axis, alg)

# allocate output
for bI in eachblockstoredindex(A)
brow, bcol = Tuple(bI)
Q[brow, bcol], R[bcol, bcol] = MatrixAlgebraKit.initialize_output(
qr_full!, @view!(A[bI]), alg.alg
)
end

# allocate output for blocks that aren't present -- do we also fill identities here?
for (row, col) in zip(emptyrows, emptycols)
@view!(Q[Block(row, col)])
end
# also handle extra rows/cols
for (i, k) in enumerate((length(emptycols) + 1):length(emptyrows))
@view!(Q[Block(emptyrows[k], bn + i)])
end

return Q, R
end

function MatrixAlgebraKit.check_input(
::typeof(qr_compact!), A::AbstractBlockSparseMatrix, QR
)
Q, R = QR
@assert isa(Q, AbstractBlockSparseMatrix) && isa(R, AbstractBlockSparseMatrix)
@assert eltype(A) == eltype(Q) == eltype(R)
@assert axes(A, 1) == axes(Q, 1) && axes(A, 2) == axes(R, 2)
@assert axes(Q, 2) == axes(R, 1)

return nothing
end

function MatrixAlgebraKit.check_input(::typeof(qr_full!), A::AbstractBlockSparseMatrix, QR)
Q, R = QR
@assert isa(Q, AbstractBlockSparseMatrix) && isa(R, AbstractBlockSparseMatrix)
@assert eltype(A) == eltype(Q) == eltype(R)
@assert axes(A, 1) == axes(Q, 1) && axes(A, 2) == axes(R, 2)
@assert axes(Q, 2) == axes(R, 1)

return nothing
end

function MatrixAlgebraKit.qr_compact!(
A::AbstractBlockSparseMatrix, QR, alg::BlockPermutedDiagonalAlgorithm
)
MatrixAlgebraKit.check_input(qr_compact!, A, QR)
Q, R = QR

# do decomposition on each block
for bI in eachblockstoredindex(A)
brow, bcol = Tuple(bI)
qr = (@view!(Q[brow, bcol]), @view!(R[bcol, bcol]))
qr′ = qr_compact!(@view!(A[bI]), qr, alg.alg)
@assert qr === qr′ "qr_compact! might not be in-place"
end

# fill in identities for blocks that aren't present
bIs = collect(eachblockstoredindex(A))
browIs = Int.(first.(Tuple.(bIs)))
bcolIs = Int.(last.(Tuple.(bIs)))
emptyrows = setdiff(1:blocksize(A, 1), browIs)
emptycols = setdiff(1:blocksize(A, 2), bcolIs)
# needs copyto! instead because size(::LinearAlgebra.I) doesn't work
# Q[Block(row, col)] = LinearAlgebra.I
for (row, col) in zip(emptyrows, emptycols)
copyto!(@view!(Q[Block(row, col)]), LinearAlgebra.I)
end

return QR
end

function MatrixAlgebraKit.qr_full!(
A::AbstractBlockSparseMatrix, QR, alg::BlockPermutedDiagonalAlgorithm
)
MatrixAlgebraKit.check_input(qr_full!, A, QR)
Q, R = QR

# do decomposition on each block
for bI in eachblockstoredindex(A)
brow, bcol = Tuple(bI)
qr = (@view!(Q[brow, bcol]), @view!(R[bcol, bcol]))
qr′ = qr_full!(@view!(A[bI]), qr, alg.alg)
@assert qr === qr′ "qr_full! might not be in-place"
end

# fill in identities for blocks that aren't present
bIs = collect(eachblockstoredindex(A))
browIs = Int.(first.(Tuple.(bIs)))
bcolIs = Int.(last.(Tuple.(bIs)))
emptyrows = setdiff(1:blocksize(A, 1), browIs)
emptycols = setdiff(1:blocksize(A, 2), bcolIs)
# needs copyto! instead because size(::LinearAlgebra.I) doesn't work
# Q[Block(row, col)] = LinearAlgebra.I
for (row, col) in zip(emptyrows, emptycols)
copyto!(@view!(Q[Block(row, col)]), LinearAlgebra.I)
end

# also handle extra rows/cols
bn = blocksize(A, 2)
for (i, k) in enumerate((length(emptycols) + 1):length(emptyrows))
copyto!(@view!(Q[Block(emptyrows[k], bn + i)]), LinearAlgebra.I)
end

return QR
end
29 changes: 28 additions & 1 deletion test/test_factorizations.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
using BlockArrays: Block, BlockedMatrix, BlockedVector, blocks, mortar
using BlockSparseArrays: BlockSparseArray, BlockDiagonal, eachblockstoredindex
using MatrixAlgebraKit: svd_compact, svd_full, svd_trunc, truncrank, trunctol
using MatrixAlgebraKit:
qr_compact, qr_full, svd_compact, svd_full, svd_trunc, truncrank, trunctol
using LinearAlgebra: LinearAlgebra
using Random: Random
using Test: @inferred, @testset, @test
Expand Down Expand Up @@ -154,3 +155,29 @@ end
@test (V1ᴴ * V1ᴴ' ≈ LinearAlgebra.I)
end
end

@testset "qr_compact" for T in (Float32, Float64, ComplexF32, ComplexF64)
for i in [1, 2], j in [1, 2], k in [1, 2], l in [1, 2]
A = BlockSparseArray{T}(undef, ([i, j], [k, l]))
A[Block(1, 1)] = randn(T, i, k)
A[Block(2, 2)] = randn(T, j, l)
Q, R = qr_compact(A)
@test Matrix(Q'Q) ≈ LinearAlgebra.I
@test A ≈ Q * R
end
end

@testset "qr_full" for T in (Float32, Float64, ComplexF32, ComplexF64)
for i in [2, 3], j in [2, 3], k in [2, 3], l in [2, 3]
A = BlockSparseArray{T}(undef, ([i, j], [k, l]))
A[Block(1, 1)] = randn(T, i, k)
A[Block(2, 2)] = randn(T, j, l)
Q, R = qr_full(A)
Q′, R′ = qr_full(Matrix(A))
@test size(Q) == size(Q′)
@test size(R) == size(R′)
@test Matrix(Q'Q) ≈ LinearAlgebra.I
@test Matrix(Q * Q') ≈ LinearAlgebra.I
@test A ≈ Q * R
end
end
Loading