forked from bulletphysics/bullet3
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add training and run/eval scripts to train envs_v2 Laikago pmtg
- Loading branch information
1 parent
e399944
commit 7ac95be
Showing
2 changed files
with
669 additions
and
0 deletions.
There are no files selected for viewing
148 changes: 148 additions & 0 deletions
148
examples/pybullet/gym/pybullet_envs/minitaur/envs_v2/laikago_ars_run_policy.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
""" | ||
Code to load a policy and generate rollout data. Adapted from https://github.com/berkeleydeeprlcourse. | ||
Example usage: | ||
python3 laikago_ars_run_policy.py --expert_policy_file=data/lin_policy_plus_best_10.npz --json_file=data/params.json | ||
""" | ||
import numpy as np | ||
import gym | ||
import time | ||
import pybullet_envs | ||
try: | ||
import tds_environments | ||
except: | ||
pass | ||
import json | ||
from arspb.policies import * | ||
import time | ||
import arspb.trained_policies as tp | ||
import os | ||
|
||
|
||
import os | ||
import gin | ||
from pybullet_envs.minitaur.envs_v2 import env_loader | ||
|
||
|
||
import pybullet_data as pd | ||
|
||
|
||
|
||
def create_laikago_env(args): | ||
CONFIG_DIR = pd.getDataPath()+"/configs_v2/" | ||
CONFIG_FILES = [ | ||
os.path.join(CONFIG_DIR, "base/laikago_with_imu.gin"), | ||
os.path.join(CONFIG_DIR, "tasks/fwd_task_no_termination.gin"), | ||
os.path.join(CONFIG_DIR, "wrappers/pmtg_wrapper.gin"), | ||
os.path.join(CONFIG_DIR, "scenes/simple_scene.gin") | ||
] | ||
|
||
#gin.bind_parameter("scene_base.SceneBase.data_root", pd.getDataPath()+"/") | ||
for gin_file in CONFIG_FILES: | ||
gin.parse_config_file(gin_file) | ||
gin.bind_parameter("SimulationParameters.enable_rendering", True) | ||
gin.bind_parameter("terminal_conditions.maxstep_terminal_condition.max_step", | ||
10000) | ||
env = env_loader.load() | ||
return env | ||
|
||
|
||
def main(argv): | ||
import argparse | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--expert_policy_file', type=str, default="") | ||
parser.add_argument('--nosleep', action='store_true') | ||
|
||
parser.add_argument('--num_rollouts', type=int, default=20, | ||
help='Number of expert rollouts') | ||
parser.add_argument('--json_file', type=str, default="") | ||
parser.add_argument('--run_on_robot', action='store_true') | ||
if len(argv): | ||
args = parser.parse_args(argv) | ||
else: | ||
args = parser.parse_args() | ||
|
||
print('loading and building expert policy') | ||
if len(args.json_file)==0: | ||
args.json_file = tp.getDataPath()+"/"+ args.envname+"/params.json" | ||
with open(args.json_file) as f: | ||
params = json.load(f) | ||
print("params=",params) | ||
if len(args.expert_policy_file)==0: | ||
args.expert_policy_file=tp.getDataPath()+"/"+args.envname+"/nn_policy_plus.npz" | ||
if not os.path.exists(args.expert_policy_file): | ||
args.expert_policy_file=tp.getDataPath()+"/"+args.envname+"/lin_policy_plus.npz" | ||
data = np.load(args.expert_policy_file, allow_pickle=True) | ||
|
||
print('create Laikago gym environment:') | ||
env = create_laikago_env(args) | ||
|
||
|
||
lst = data.files | ||
weights = data[lst[0]][0] | ||
mu = data[lst[0]][1] | ||
print("mu=",mu) | ||
std = data[lst[0]][2] | ||
print("std=",std) | ||
|
||
ob_dim = env.observation_space.shape[0] | ||
ac_dim = env.action_space.shape[0] | ||
ac_lb = env.action_space.low | ||
ac_ub = env.action_space.high | ||
|
||
policy_params={'type': params["policy_type"], | ||
'ob_filter':params['filter'], | ||
'ob_dim':ob_dim, | ||
'ac_dim':ac_dim, | ||
'action_lower_bound' : ac_lb, | ||
'action_upper_bound' : ac_ub, | ||
} | ||
policy_params['weights'] = weights | ||
policy_params['observation_filter_mean'] = mu | ||
policy_params['observation_filter_std'] = std | ||
if params["policy_type"]=="nn": | ||
print("FullyConnectedNeuralNetworkPolicy") | ||
policy_sizes_string = params['policy_network_size_list'].split(',') | ||
print("policy_sizes_string=",policy_sizes_string) | ||
policy_sizes_list = [int(item) for item in policy_sizes_string] | ||
print("policy_sizes_list=",policy_sizes_list) | ||
policy_params['policy_network_size'] = policy_sizes_list | ||
policy = FullyConnectedNeuralNetworkPolicy(policy_params, update_filter=False) | ||
else: | ||
print("LinearPolicy2") | ||
policy = LinearPolicy2(policy_params, update_filter=False) | ||
policy.get_weights() | ||
|
||
returns = [] | ||
observations = [] | ||
actions = [] | ||
for i in range(args.num_rollouts): | ||
print('iter', i) | ||
obs = env.reset() | ||
done = False | ||
totalr = 0. | ||
steps = 0 | ||
while not done: | ||
action = policy.act(obs) | ||
observations.append(obs) | ||
actions.append(action) | ||
|
||
#time.sleep(1) | ||
obs, r, done, _ = env.step(action) | ||
totalr += r | ||
steps += 1 | ||
|
||
#if steps % 100 == 0: print("%i/%i"%(steps, env.spec.timestep_limit)) | ||
#if steps >= env.spec.timestep_limit: | ||
# break | ||
#print("steps=",steps) | ||
returns.append(totalr) | ||
|
||
print('returns', returns) | ||
print('mean return', np.mean(returns)) | ||
print('std of return', np.std(returns)) | ||
|
||
if __name__ == '__main__': | ||
import sys | ||
main(sys.argv[1:]) |
Oops, something went wrong.