-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bf48348
commit 848c699
Showing
21 changed files
with
1,145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
function [image_features] = bag_of_hogs(vocabulary,type_of_dataset) | ||
|
||
|
||
%Step size for SIFT detection | ||
step_size=4; | ||
vocab_size = size(vocabulary, 1); | ||
|
||
if(type_of_dataset) | ||
plane_source = 'D:\Mandeep\Summer\BTP\Tracking\Hog\tight_dataset\'; | ||
non_plane_source = 'D:\Mandeep\Summer\BTP\Tracking\Hog\Negatives2\'; | ||
fprintf('Will find features for training datasets\n'); | ||
total_images_positive = 1000; | ||
total_images_negative = 1000; | ||
random_numbers=randi([1 2000],1,total_images_negative); | ||
% image_features = zeros(total_images, vocab_size); | ||
else | ||
plane_source = 'D:\Mandeep\Summer\BTP\Tracking\Hog\positives_test_dataset\'; | ||
non_plane_source = 'D:\Mandeep\Summer\BTP\Tracking\Hog\negatives_test_dataset\'; | ||
fprintf('Will find features for testing datasets \n'); | ||
total_images_positive = 5; | ||
total_images_negative = 5; | ||
random_numbers=randi([1 20],1,total_images_negative); | ||
% image_features = zeros(total_images, vocab_size); | ||
end | ||
%generating histograms of 2000 bins , where value of bin tells most no. of | ||
%matches with different cluster centres | ||
|
||
|
||
%for plane dataset | ||
|
||
counter = 1; | ||
image_counter = 1; | ||
fprintf('Computing Bag of words : Positives\n'); | ||
while(image_counter <= total_images_positive) | ||
filename = strcat(plane_source,num2str(counter),'.jpg'); | ||
if exist(filename,'file') | ||
if (mod(image_counter,100)==0) | ||
fprintf(' ..Processed %d Images\n',image_counter); | ||
%fprintf(' Size of hog features : \n'); | ||
%size(hog_features) | ||
end | ||
try | ||
img = im2single(imread(filename)); | ||
catch | ||
fprintf('Probelm in file %d',counter); | ||
counter = counter + 1; | ||
continue | ||
end | ||
%gives 128 x num_of_features with one descriptor per column | ||
hog = vl_hog(img,step_size); | ||
[x,y,z] = size(hog); | ||
hog_features = (reshape(hog,[x*y,z]))'; | ||
%to reduce precision to 32 | ||
features = single(hog_features); | ||
size(features) | ||
[indices, distances] = knnsearch(vocabulary, features'); | ||
|
||
%generating histogram and then normalizing it | ||
imhist=histc(indices, 1:vocab_size); | ||
imhist_norm=imhist./numel(imhist); | ||
image_features(image_counter,:) = imhist_norm'; | ||
image_counter = image_counter + 1; | ||
counter = counter + 1; | ||
else | ||
counter = counter + 1; | ||
end | ||
end | ||
|
||
fprintf('Computing Bag of words : Negatives\n'); | ||
counter2 = 1; | ||
|
||
% for non_vehicle_dataset | ||
image_counter = 1; | ||
while(image_counter <= total_images_negative) | ||
filename = strcat(non_plane_source,num2str(random_numbers(counter2)),'.jpg'); | ||
if exist(filename,'file') | ||
if (mod(image_counter,100)==0) | ||
fprintf(' ..Processed %d Images\n',image_counter); | ||
%fprintf(' Size of hog features : \n'); | ||
%size(hog_features) | ||
end | ||
try | ||
img = im2single(imread(filename)); | ||
% img = imresize(img,0.2); | ||
catch | ||
fprintf('Probelm in file %d',counter2); | ||
counter2 = counter2 + 1; | ||
continue | ||
end | ||
%fprintf('Processed %d Images\n',image_counter); | ||
hog = vl_hog(img,step_size); | ||
[x,y,z] = size(hog); | ||
hog_features = (reshape(hog,[x*y,z]))'; | ||
%to reduce precision to 32 | ||
features = single(hog_features); | ||
|
||
%Find the nearest cluster center in vocabulary for each local feature | ||
%in the image based on the Euclidean distance | ||
%[indices, distances] = KNNSEARCH(vocabulary,features) returns a vector | ||
% distances containing the distances between each row of features and its | ||
% closest point in vocabulary. Each row in 'indices' contains the index of | ||
% the nearest neighbor in vocabulary for the corresponding row in features. | ||
[indices, distances] = knnsearch(vocabulary, features'); | ||
|
||
%generating histogram and then normalizing it | ||
hist=histc(indices, 1:vocab_size); | ||
hist_norm=hist./numel(hist); | ||
image_features2(image_counter,:) = hist_norm'; | ||
|
||
image_counter = image_counter + 1; | ||
counter2 = counter2 + 1; | ||
else | ||
counter2 = counter2 + 1; | ||
end | ||
end | ||
fprintf('Size image features : %d\n', size(image_features,1)); | ||
fprintf('Size image features2 : %d\n', size(image_features2,1)); | ||
image_features = [image_features; image_features2]; | ||
fprintf('Size image features again: %d\n', size(image_features,1)); | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
function [image_features] = bag_of_sifts(vocabulary,type_of_dataset) | ||
|
||
|
||
%Step size for SIFT detection | ||
step_size=4; | ||
size(vocabulary); | ||
vocab_size = size(vocabulary, 1); | ||
|
||
if(type_of_dataset) | ||
plane_source = 'D:\Mandeep\Summer\BTP\Tracking\Hog\positives_training_data\'; | ||
non_plane_source = 'D:\Mandeep\Summer\BTP\Tracking\Hog\negatives_training_data\'; | ||
fprintf('Will find features for training datasets\n'); | ||
total_images_positive = 2000; | ||
total_images_negative = 5107; %3000 | ||
random_numbers=randi([1 5000],1,total_images_negative); | ||
% image_features = zeros(total_images, vocab_size); | ||
else | ||
plane_source = 'D:\Mandeep\Summer\BTP\Tracking\Hog\positives_test_dataset\'; | ||
non_plane_source = 'D:\Mandeep\Summer\BTP\Tracking\Hog\negatives_test_dataset\'; | ||
fprintf('Will find features for testing datasets \n'); | ||
total_images_positive = 5; | ||
total_images_negative = 5; | ||
random_numbers=randi([1 20],1,total_images_negative); | ||
% image_features = zeros(total_images, vocab_size); | ||
end | ||
%generating histograms of 2000 bins , where value of bin tells most no. of | ||
%matches with different cluster centres | ||
|
||
|
||
%for plane dataset | ||
|
||
counter = 1; | ||
image_counter = 1; | ||
fprintf('Computing Bag of words : Positives\n'); | ||
while(image_counter <= total_images_positive) | ||
filename = strcat(plane_source,num2str(counter),'.jpg'); | ||
if exist(filename,'file') | ||
if (mod(image_counter,100)==0) | ||
fprintf(' ..Processed %d Images\n',image_counter); | ||
%fprintf(' Size of hog features : \n'); | ||
%size(hog_features) | ||
end | ||
try | ||
img = im2single(rgb2gray(imread(filename))); | ||
catch | ||
fprintf('Probelm in file %d',counter); | ||
counter = counter + 1; | ||
continue | ||
end | ||
%gives 128 x num_of_features with one descriptor per column | ||
%hog = vl_hog(img,step_size); | ||
%[x,y,z] = size(hog); | ||
%hog_features = (reshape(hog,[x*y,z]))'; | ||
[~, features] = vl_dsift(img, 'Fast', 'Step', step_size); | ||
%to reduce precision to 32 | ||
features = single(features); | ||
size(features); | ||
[indices, distances] = knnsearch(vocabulary, features'); | ||
|
||
%generating histogram and then normalizing it | ||
imhist=histc(indices, 1:vocab_size); | ||
imhist_norm=imhist./numel(imhist); | ||
image_features(image_counter,:) = imhist_norm'; | ||
image_counter = image_counter + 1; | ||
counter = counter + 1; | ||
else | ||
counter = counter + 1; | ||
end | ||
end | ||
|
||
fprintf('Computing Bag of words : Negatives\n'); | ||
counter2 = 1; | ||
|
||
% for non_vehicle_dataset | ||
image_counter = 1; | ||
while(image_counter <= total_images_negative) | ||
filename = strcat(non_plane_source,num2str(random_numbers(counter2)),'.jpg'); | ||
if exist(filename,'file') | ||
if (mod(image_counter,100)==0) | ||
fprintf(' ..Processed %d Images\n',image_counter); | ||
%fprintf(' Size of hog features : \n'); | ||
%size(hog_features) | ||
end | ||
try | ||
img = im2single(rgb2gray(imread(filename))); | ||
% img = imresize(img,0.2); | ||
catch | ||
fprintf('Probelm in file %d',counter2); | ||
counter2 = counter2 + 1; | ||
continue | ||
end | ||
%fprintf('Processed %d Images\n',image_counter); | ||
%hog = vl_hog(img,step_size); | ||
%[x,y,z] = size(hog); | ||
%hog_features = (reshape(hog,[x*y,z]))'; | ||
%to reduce precision to 32 | ||
[~, features] = vl_dsift(img, 'Fast', 'Step', step_size); | ||
features = single(features); | ||
|
||
%Find the nearest cluster center in vocabulary for each local feature | ||
%in the image based on the Euclidean distance | ||
%[indices, distances] = KNNSEARCH(vocabulary,features) returns a vector | ||
% distances containing the distances between each row of features and its | ||
% closest point in vocabulary. Each row in 'indices' contains the index of | ||
% the nearest neighbor in vocabulary for the corresponding row in features. | ||
[indices, distances] = knnsearch(vocabulary, features'); | ||
|
||
%generating histogram and then normalizing it | ||
hist=histc(indices, 1:vocab_size); | ||
hist_norm=hist./numel(hist); | ||
image_features2(image_counter,:) = hist_norm'; | ||
|
||
image_counter = image_counter + 1; | ||
counter2 = counter2 + 1; | ||
else | ||
counter2 = counter2 + 1; | ||
end | ||
end | ||
fprintf('Size image features : %d\n', size(image_features,1)); | ||
fprintf('Size image features2 : %d\n', size(image_features2,1)); | ||
image_features = [image_features; image_features2]; | ||
fprintf('Size image features again: %d\n', size(image_features,1)); | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
clc | ||
clear | ||
close all | ||
|
||
run('D:/Softwares/vlfeat-0.9.20/toolbox/vl_setup'); | ||
files = dir('D:\Mandeep\Summer\BTP\Tracking\negatives_training_data\*.jpg'); | ||
count = length(files); | ||
files2 = dir('D:\Mandeep\Summer\BTP\Tracking\HOG\negatives_training_data\*.jpg'); | ||
count2 = length(files2); | ||
|
||
load('weights.mat'); | ||
load('offsets.mat'); | ||
load('vocabulary.mat'); | ||
|
||
filename = '77.jpg';%1 | 2 | 352| 447 |654 | 77 | | ||
img = imread(filename); | ||
original = img; | ||
%imshow(img); | ||
|
||
|
||
%i - traversing left to right || j - traversing top to bottom || i_n - | ||
%image number | ||
i = 1; j = 1; | ||
% while( (i <= max_y - s_w) && (j <= max_x - s_h)) | ||
i_n = 1; | ||
bbox ={}; | ||
scores = []; | ||
images_tried = 0; | ||
for scale = 1:-0.1:0.6 | ||
img = imresize(original,scale); | ||
%max_y - width of image || max_X - height of image | ||
max_y = size(img,2); max_x = size(img,1); | ||
%s_h - scale_height || s_w - scale_width | ||
s_h = 20;s_w = 45; | ||
for i = max_x/2:10:(max_x/2 + max_x/4) | ||
for j = 1:10:max_y - s_w | ||
%c_i - cropped_image | ||
crop = [j,i,s_w,s_h] ; | ||
c_i = imcrop(img, crop); | ||
%c_i = imread('D:\Mandeep\Summer\BTP\Tracking\Hog\test_data3\1762.jpg'); | ||
features = extract_features(c_i,vocabulary); | ||
[plane,score] = classify(features,weights,offsets); | ||
if(plane) | ||
i_n | ||
scores = [scores;score]; | ||
crop = [(crop(1)/scale), (crop(2)/scale), (crop(3)/scale),(crop(4)/scale)]; | ||
bbox{i_n,1} = crop; | ||
i_n = i_n + 1; | ||
count2 = count2 + 1; | ||
filename = strcat('D:\Mandeep\Summer\BTP\Tracking\Hog\negatives_training_data\',num2str(count2),'.jpg'); | ||
imwrite(c_i,filename); | ||
end | ||
plane = 0; | ||
images_tried = images_tried + 1; | ||
end | ||
end | ||
images_tried | ||
images_tried = 0; | ||
end | ||
bbox = cell2mat(bbox); | ||
|
||
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,scores,'RatioType','Min','OverlapThreshold',0.2); | ||
img = original; | ||
for i = 1:size(selectedBbox,1) | ||
img = insertShape(img,'rectangle',selectedBbox(i,:),'LineWidth',1); | ||
|
||
end | ||
imshow(img); | ||
|
||
function [features] = extract_features(img,vocabulary) | ||
img = im2single(rgb2gray(img)); | ||
vocab_size = size(vocabulary, 1); | ||
[~, features] = vl_dsift(img, 'Fast', 'Step', 4); | ||
features = single(features); | ||
[indices] = knnsearch(vocabulary, features'); | ||
imhist=histc(indices, 1:vocab_size); | ||
imhist_norm=imhist./numel(imhist); | ||
features = imhist_norm'; | ||
end | ||
|
||
function [plane,score] = classify(features,weights,offsets) | ||
training_score = []; | ||
for i = 1:2 | ||
training_score = [training_score; weights{i}'*features' + offsets{i}]; | ||
end | ||
[~,label_indices] = max(training_score); | ||
if (label_indices == 2) | ||
score = training_score(label_indices); | ||
plane = 1; | ||
else | ||
plane = 0; | ||
score = 0; | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
clc | ||
clear | ||
close all | ||
|
||
run('D:/Softwares/vlfeat-0.9.20/toolbox/vl_setup'); | ||
files = dir('D:\Mandeep\Summer\BTP\Tracking\HOG\negatives_test_data\*.jpg'); | ||
files2 = dir('D:\Mandeep\Summer\BTP\Tracking\HOG\negatives_training_data\*.jpg'); | ||
count = length(files); | ||
count2 = length(files2) | ||
|
||
load('weights.mat'); | ||
load('offsets.mat'); | ||
load('vocabulary.mat'); | ||
i_n = 0; | ||
for i = 1:6000 | ||
filename = strcat('D:\Mandeep\Summer\BTP\Tracking\Hog\negatives_test_data\',num2str(i),'.jpg'); | ||
img = imread(filename); | ||
features = extract_features(img,vocabulary); | ||
[plane,score] = classify(features,weights,offsets); | ||
if(plane) | ||
i | ||
i_n = i_n + 1; | ||
count2 = count2 + 1; | ||
filename = strcat('D:\Mandeep\Summer\BTP\Tracking\Hog\negatives_training_data\',num2str(count2),'.jpg'); | ||
imwrite(img,filename); | ||
end | ||
end | ||
|
||
|
||
function [features] = extract_features(img,vocabulary) | ||
img = im2single(rgb2gray(img)); | ||
vocab_size = size(vocabulary, 1); | ||
[~, features] = vl_dsift(img, 'Fast', 'Step', 4); | ||
features = single(features); | ||
[indices] = knnsearch(vocabulary, features'); | ||
imhist=histc(indices, 1:vocab_size); | ||
imhist_norm=imhist./numel(imhist); | ||
features = imhist_norm'; | ||
end | ||
|
||
function [plane,score] = classify(features,weights,offsets) | ||
training_score = []; | ||
for i = 1:2 | ||
training_score = [training_score; weights{i}'*features' + offsets{i}]; | ||
end | ||
[~,label_indices] = max(training_score); | ||
if (label_indices == 2) | ||
score = training_score(label_indices); | ||
plane = 1; | ||
else | ||
plane = 0; | ||
score = 0; | ||
end | ||
end |
Oops, something went wrong.