Skip to content

Namita #8

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 17 additions & 1 deletion fittingParameters.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def __init__(self, concentrations=None, f_abs_green_max=None,
self.frac_bound_lowerbound = 0.999
self.fdr_cutoff = 0.05

self.fitParameters = pd.DataFrame(columns=['fmax', 'dG', 'fmin', 'toff'],
self.fitParameters = pd.DataFrame(columns=['fmax', 'dG', 'fmin', 'toff', 'ton'],
index=['lowerbound', 'initial', 'upperbound'])
if concentrations is not None:
self.concentrations = concentrations
Expand Down Expand Up @@ -72,7 +72,23 @@ def __init__(self, concentrations=None, f_abs_green_max=None,
self.fitParameters[currParam]['lowerbound']= 0
self.fitParameters[currParam]['initial']= np.nan # this will be defined per cluster
self.fitParameters[currParam]['upperbound'] = self.find_fmax_lowerbound(f_abs_green_nonbinders, self.fdr_cutoff) # this is futher reducedor relaxed if the first point in the binding curve was fit

if fittype == 'onrate':
currParam = 'ton'
self.fitParameters[currParam]['lowerbound'] = 1E-1
self.fitParameters[currParam]['initial']= 1E4
self.fitParameters[currParam]['upperbound'] = 1E6

currParam = 'fmin'
self.fitParameters[currParam]['lowerbound'] = 0
self.fitParameters[currParam]['initial'] = np.nan # this will be defined per cluster
self.fitParameters[currParam]['upperbound'] = self.find_fmax_lowerbound(f_abs_green_nonbinders, self.fdr_cutoff) # this is futher reducedor relaxed if the first point in the binding curve was fit

currParam = 'fmax'
self.fitParameters[currParam]['lowerbound']= 0
self.fitParameters[currParam]['initial']= np.nan # this will be defined per cluster
self.fitParameters[currParam]['upperbound'] = self.find_fmax_lowerbound(f_abs_green_nonbinders, self.fdr_cutoff) # this is futher reducedor relaxed if the first point in the binding curve was fit



# estimate conversion of f_abs_red to f_abs_green
Expand Down
8 changes: 8 additions & 0 deletions libs/CurveFitFun.m
Original file line number Diff line number Diff line change
Expand Up @@ -28,5 +28,13 @@
function q = findFDR(score, null_scores)
q = sum(abs(null_scores) > abs(score))/length(null_scores);
end

% function to find on rate curve
function fracbound = findOnRate(x, time)
fmax = x(1);
ton = x(2);
fmin = x(3);
fracbound = fmin + fmax*(1 - exp(-time/ton));
end
end
end
27 changes: 17 additions & 10 deletions libs/IMlibs.py
Original file line number Diff line number Diff line change
Expand Up @@ -340,18 +340,21 @@ def fitSetKds(fitParametersFilenameParts, bindingSeriesFilenameParts, initialFit
fitParameters = joinTogetherFitParts(fitParametersFilenameParts)
return fitParameters

def fitSetKoff(fitParametersFilenameParts, bindingSeriesFilenameParts, initialFitParameters, scale_factor):
def fitSetKoff(fitParametersFilenameParts, bindingSeriesFilenameParts, initialFitParameters, scale_factor, fittype=None):
if fittype is None: fittype = 'offrate'
if fittype == 'offrate': parameter = 'toff'
if fittype == 'onrate': parameter = 'ton'
workerPool = multiprocessing.Pool(processes=len(bindingSeriesFilenameParts)) #create a multiprocessing pool that uses at most the specified number of cores
for i, bindingSeriesFilename in bindingSeriesFilenameParts.items():
result = workerPool.apply_async(findKoff, args=(bindingSeriesFilename, fitParametersFilenameParts[i],
initialFitParameters['fmax']['lowerbound'], initialFitParameters['fmax']['upperbound'], initialFitParameters['fmax']['initial'],
initialFitParameters['toff']['lowerbound'], initialFitParameters['toff']['upperbound'], initialFitParameters['toff']['initial'],
initialFitParameters[parameter]['lowerbound'], initialFitParameters[parameter]['upperbound'], initialFitParameters[parameter]['initial'],
initialFitParameters['fmin']['lowerbound'], initialFitParameters['fmin']['upperbound'], initialFitParameters['fmin']['initial'],
scale_factor,)
scale_factor, fittype)
)
workerPool.close()
workerPool.join()
fitParameters = joinTogetherFitParts(fitParametersFilenameParts, parameter='toff')
fitParameters = joinTogetherFitParts(fitParametersFilenameParts, parameter=parameter)
return fitParameters

def findKds(bindingSeriesFilename, outputFilename, fmax_min, fmax_max, fmax_initial, kd_min, kd_max, kd_initial, fmin_min, fmin_max, fmin_initial, scale_factor):
Expand All @@ -368,14 +371,14 @@ def findKds(bindingSeriesFilename, outputFilename, fmax_min, fmax_max, fmax_init
except Exception,e:
return(matlabFunctionCallString,'Python excpetion generated in findKds: ' + e.message + e.stack)

def findKoff(bindingSeriesFilename, outputFilename, fmax_min, fmax_max, fmax_initial, kd_min, kd_max, kd_initial, fmin_min, fmin_max, fmin_initial, scale_factor):
matlabFunctionCallString = "fitOffRateCurve('%s', [%4.2f, %4.2f, %4.2f], [%4.2f, %4.2f, %4.2f], '%s', [%4.2f, %4.2f, %4.2f], %4.2f );"%(bindingSeriesFilename,
def findKoff(bindingSeriesFilename, outputFilename, fmax_min, fmax_max, fmax_initial, kd_min, kd_max, kd_initial, fmin_min, fmin_max, fmin_initial, scale_factor, fittype):
matlabFunctionCallString = "fitOffRateCurve('%s', [%4.2f, %4.2f, %4.2f], [%4.2f, %4.2f, %4.2f], '%s', [%4.2f, %4.2f, %4.2f], %4.2f, '%s' );"%(bindingSeriesFilename,

fmax_min, kd_min, fmin_min,
fmax_max, kd_max, fmin_max,
outputFilename,
fmax_initial, kd_initial, fmin_initial,
scale_factor)
scale_factor, fittype)
try:
logString = spawnMatlabJob(matlabFunctionCallString)
return (matlabFunctionCallString, logString)
Expand Down Expand Up @@ -563,11 +566,15 @@ def loadOffRatesCurveFromCPsignal(filename, timeStampDict, numCores=None):
xvalues[tiles==tile] = timeDelta
return binding_series, np.array(table['all_cluster_signal']), xvalues, tiles

def loadFittedCPsignal(filename):
def loadFittedCPsignal(filename, index_by_cluster=None):
if index_by_cluster is None: index_by_cluster = False
f = open(filename); header = np.array(f.readline().split()); f.close()
index_start = np.where(header=='variant_number')[0][0]
index_end = len(header)
table = pd.read_table(filename, usecols=tuple(range(index_start,index_end)))
if index_by_cluster:
table = pd.read_table(filename, usecols=tuple([0]+range(index_start,index_end)), index_col=0)
else:
table = pd.read_table(filename, usecols=tuple(range(index_start,index_end)))
binding_series, all_cluster_image = loadBindingCurveFromCPsignal(filename)
for col in range(binding_series.shape[1]):
table[col] = binding_series[:, col]
Expand Down Expand Up @@ -628,7 +635,7 @@ def findVariantTable(table, parameter=None, numCores=None, variants=None):
def filterFitParameters(sub_table):
not_nan_binding_points = [0,1] # if first two binding points are NaN, filter
nan_filter = np.all(np.isfinite(sub_table[not_nan_binding_points]), 1)
barcode_filter = np.array(sub_table['fraction_consensus'] > 50)
barcode_filter = np.array(sub_table['fraction_consensus'] >= 67)
fit_filter = np.array(sub_table['rsq'] > 0)

# use barcode_filter, nan_filter to reduce sub_table
Expand Down
Loading