Skip to content

VIDSENTIMENT is a web app for sentiment analysis of YouTube comments using a GPT-2 model. It fetches video metadata via the YouTube API, processes comments, and classifies sentiments (positive, neutral, negative). Built with FastAPI, Torch, and a web frontend, it provides visual insights to help creators and marketers improve engagement strategies.

Notifications You must be signed in to change notification settings

GoldSharon/VidSentiment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VIDSENTIMENT

Sentiment Analysis of Video Comments

📌 Overview

VIDSENTIMENT is a web-based application that performs sentiment analysis on YouTube video comments. The project leverages machine learning models to classify sentiments and visualize results for better audience insights.

🚀 Features

  • Sentiment Classification: Achieved over 85% accuracy in classifying sentiments (positive, neutral, negative).
  • YouTube API Integration: Fetches video metadata (title, description, channel name, likes, views) and comments using the YouTube API.
  • FastAPI Backend: Provides a scalable and fast API to serve predictions.
  • Web Interface: Developed using HTML, CSS, and JavaScript for user-friendly interaction.
  • Visualization: Implements graphical bar charts to display sentiment distribution.
  • GPT-2 Model: Uses a 123M parameter GPT-2 model for sentiment classification.

🛠️ Tech Stack

  • Machine Learning: TensorFlow
  • Backend: FastAPI
  • Frontend: HTML, CSS, JavaScript
  • Cloud Deployment: AWS EC2
  • Visualization: Chart.js

📂 Project Structure

VIDSENTIMENT/
│── backend/
│   ├── models/
│   │   ├── Model/
│   │   │   ├── GPT_2.py
│   │   ├── Model Weights/
│   │   │   ├── model_and_optimizer_youtube...
│   ├── routes/
│── frontend/
│   ├── css/
│   │   ├── style.css
│   ├── js/
│   │   ├── script.js
│   ├── index.html
│── scripts/
│   ├── pre_processes.py
│   ├── youtube_data_fetcher.py
│── main.py
│── README.md
│── requirements.txt

🔧 Setup Instructions

1️⃣ Prerequisites

  • Python 3.8+
  • Google Cloud Console API Key (for YouTube API access)

2️⃣ Installation

Clone the repository and install dependencies:

git clone https://github.com/your-repo/Vidsentiment.git  
cd Vidsentiment  
pip install -r requirements.txt  

3️⃣ Configure API Key

4️⃣ Run the Application

Start the FastAPI backend:

uvicorn main:app --reload

Access the web interface at: http://127.0.0.1:8000/

📊 Impact

  • Helps content creators and marketing teams understand audience sentiment.
  • Improves engagement strategies and data-driven decision-making.

📌 Contributors: Gold Sharon
📌 License: MIT
📌 Contact: [email protected]

About

VIDSENTIMENT is a web app for sentiment analysis of YouTube comments using a GPT-2 model. It fetches video metadata via the YouTube API, processes comments, and classifies sentiments (positive, neutral, negative). Built with FastAPI, Torch, and a web frontend, it provides visual insights to help creators and marketers improve engagement strategies.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published