Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Removing "__name__ == "__main__":" function and indenting the code #6

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
158 changes: 49 additions & 109 deletions part1.py
Original file line number Diff line number Diff line change
@@ -1,125 +1,65 @@
# organize imports
import cv2
import imutils
import numpy as np

# global variables
bg = None

#-------------------------------------------------------------------------------
# Function - To find the running average over the background
#-------------------------------------------------------------------------------
def run_avg(image, aWeight):
global bg
# initialize the background
if bg is None:
bg = image.copy().astype("float")
return

# compute weighted average, accumulate it and update the background
cv2.accumulateWeighted(image, bg, aWeight)

#-------------------------------------------------------------------------------
# Function - To segment the region of hand in the image
#-------------------------------------------------------------------------------
def segment(image, threshold=25):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)

# threshold the diff image so that we get the foreground
thresholded = cv2.threshold(diff,
threshold,
255,
cv2.THRESH_BINARY)[1]

# get the contours in the thresholded image
(_, cnts, _) = cv2.findContours(thresholded.copy(),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

# return None, if no contours detected
if len(cnts) == 0:
return
else:
# based on contour area, get the maximum contour which is the hand
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)

#-------------------------------------------------------------------------------
# Main function
#-------------------------------------------------------------------------------
if __name__ == "__main__":
# initialize weight for running average
aWeight = 0.5

# get the reference to the webcam
camera = cv2.VideoCapture(0)

# region of interest (ROI) coordinates
top, right, bottom, left = 10, 350, 225, 590

# initialize num of frames
num_frames = 0

# keep looping, until interrupted
while(True):
# get the current frame
(grabbed, frame) = camera.read()

# resize the frame
frame = imutils.resize(frame, width=700)

# flip the frame so that it is not the mirror view
frame = cv2.flip(frame, 1)

# clone the frame
clone = frame.copy()

# get the height and width of the frame
(height, width) = frame.shape[:2]

# get the ROI
roi = frame[top:bottom, right:left]

# convert the roi to grayscale and blur it
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)

# to get the background, keep looking till a threshold is reached
# so that our running average model gets calibrated
if num_frames < 30:
run_avg(gray, aWeight)
else:
# segment the hand region
hand = segment(gray)

# check whether hand region is segmented
if hand is not None:
# if yes, unpack the thresholded image and
# segmented region
(thresholded, segmented) = hand

# draw the segmented region and display the frame
cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255))
cv2.imshow("Thesholded", thresholded)

# draw the segmented hand
cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2)

# increment the number of frames
num_frames += 1

# display the frame with segmented hand
cv2.imshow("Video Feed", clone)
def segment(image, threshold=25):
global bg
diff = cv2.absdiff(bg.astype("uint8"), image)

# observe the keypress by the user
keypress = cv2.waitKey(1) & 0xFF
thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]

# if the user pressed "q", then stop looping
if keypress == ord("q"):
break
(_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# free up memory
camera.release()
cv2.destroyAllWindows()
if len(cnts) == 0:
return
else:
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)

aWeight = 0.5
cap = cv2.VideoCapture(0)
top, right, bottom, left = 10, 350, 225, 590
num_frames = 0
while(cap.isOpened()):
ret, frame = cap.read()
frame = imutils.resize(frame, width=700)
frame = cv2.flip(frame, 1)

clone = frame.copy()

(height, width) = frame.shape[:2]

roi = frame[top:bottom, right:left]

gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)

if num_frames < 30:
run_avg(gray, aWeight)
else:
hand = segment(gray)

if hand is not None:
(thresholded, segmented) = hand
cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255))
cv2.imshow("Thesholded", thresholded)
if cv2.waitKey(1) & 0xFF == ord('q'):
break

cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2)
num_frames += 1
cv2.imshow("Video Feed", clone)
keypress = cv2.waitKey(1) & 0xFF
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()