Huichun Liu , Xiaosong Li*, Tianshu Tan
IEEE/CVF Asian Conference on Computer Vision (ACCV2024)
Arxiv Link: https://arxiv.org/abs/2410.10121
Dataset | NH-HAZE | Dense-HAZE | 6k |
---|---|---|---|
Baidu Cloud | Download (801y) | Download (ixen) | Download (gtuw) |
Please download the corresponding datasets and put them in the folder ./data/<datase_name>
. (The train and valid split files are provided in ./data/<datase_name>
. )
The data
directory structure will be arranged as: (Note: please check it carefully)
data
|-Dense-Haze
|- train_dense
|- haze
|- 01_hazy.png
|- 02_hazy.png
|- clear_images
|- 01_GT.png
|- 02_GT.png
|- trainlist.txt
|- valid_dense
|- input
|- 51_hazy.png
|- 52_hazy.png
|- gt
|- 51_GT.png
|- 52_GT.png
|- val_list.txt
|-NH-Haze
|- train_NH
|- haze
|- 01_hazy.png
|- 02_hazy.png
|- clear_images
|- 01_GT.png
|- 02_GT.png
|- trainlist.txt
|- valid_NH
|- input
|- 51_hazy.png
|- 52_hazy.png
|- gt
|- 51_GT.png
|- 52_GT.png
|- val_list.txt
Dataset | NH-HAZE | Dense-HAZE | 6k |
---|---|---|---|
Baidu Cloud | Download (yzcs) | Download (2fzx) | Download (xtds) |
Then, place the models to ckpts/<dataset_name>
directory, separately.
The directory structure will be arranged as:
ckpts
|- Dense
|- DENSE-16.42ssim0.5235.pt
|- NH
|- NH-20.10ssim6716.pt.pt
|- 6k
|- 6K-30.20ssim0.9643.pt
See python src/train.py --h
for list of optional arguments, or train.sh
for examples.
An example of NH-HAZE dataset.
CUDA_VISIBLE_DEVICES=0,1 python src/train.py \
--dataset-name NH \
--train-dir ./data/train_NH/ \
--valid-dir ./data/valid_NH/ \
--ckpt-save-path ../ckpts \
--ckpt-overwrite \
--nb-epochs 5000 \
--batch-size 2\
--train-size 800 1200 \
--valid-size 800 1200 \
--loss l1 \
--plot-stats \
--cuda
Or you can just run it
bash train.sh
See python test_PSNR.py --h
for list of optional arguments, or test.sh
for an example.
An example of NH-HAZE dataset.
CUDA_VISIBLE_DEVICES=1 python src/test_PSNR.py \
--dataset-name NH
Or you can just run it
bash test.sh
Dataset | PSNR | SSIM | Entriopy | LPIPS |
---|---|---|---|---|
NH-HAZE | 20.10 | 0.6716 | 7.5319 | 0.3210 |
Dense-HAZE | 16.42 | 0.5235 | 6.9600 | 0.6696 |
6K | 30.20 | 0.9643 | 7.4325 | 0.1749 |
If you find this repo useful, please give us a star and consider citing our papers:
@inproceedings{liu2024interaction,
title={Interaction-Guided Two-Branch Image Dehazing Network},
author={Liu, Huichun and Li, Xiaosong and Tan, Tianshu},
booktitle={Proceedings of the Asian Conference on Computer Vision},
pages={4069--4084},
year={2024}
}
@article{liu2024interaction,
title={Interaction-Guided Two-Branch Image Dehazing Network},
author={Liu, Huichun and Li, Xiaosong and Tan, Tianshu},
journal={arXiv preprint arXiv:2410.10121},
year={2024}
}
If you have any question, please feel free to contact us via [email protected]
.
This code is based on Dehamer, DeHazeFormer.