Skip to content

(WIP) Prove mrec_loop2 #276

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: master
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 94 additions & 0 deletions theories/Interp/RecursionFacts.v
Original file line number Diff line number Diff line change
Expand Up @@ -254,3 +254,97 @@ Instance euttge_interp_mrec' {E D R} (ctx : D ~> itree (D +' E)) :
Proof.
do 4 red. eapply euttge_interp_mrec. reflexivity.
Qed.

Module Interp_mrec_loop2.

Inductive invariant {D E} (ctx : D ~> itree (D +' E)) {R}
: itree (D +' E) R -> itree (D +' E) R -> Prop :=
| Equal {t} : invariant ctx t t
| Interp {A} {t : itree (D +' E) A} {k k' : A -> _} : (forall a, invariant ctx (k a) (k' a)) -> invariant ctx (t >>= k) (interp (Handler.case_ ctx Handler.inr_) t >>= k')
| Bind {A} {t : itree (D +' E) A} {k k' : A -> _}
: (forall (a : A), invariant ctx (k a) (k' a)) ->
invariant ctx (t >>= k) (t >>= fun x => k' x)
.
Hint Constructors invariant : core.

Inductive itree_case {E R} (t : itree E R) : Prop :=
| CaseRet r : Ret r ≅ t -> itree_case t
| CaseTau u : Tau u ≅ t -> itree_case t
| CaseVis A (e : E A) k : Vis e k ≅ t -> itree_case t.

Lemma case_itree {E R} (t : itree E R) : itree_case t.
Proof.
destruct (observe t) eqn:Eq.
- econstructor 1. rewrite <- Eq, <- itree_eta; reflexivity.
- econstructor 2. rewrite <- Eq, <- itree_eta; reflexivity.
- econstructor 3. rewrite <- Eq, <- itree_eta; reflexivity.
Qed.

Lemma interp_mrec_loop2_ {D E} (ctx : D ~> itree (D +' E)) {R}
: forall {t : itree (D +' E) R} {u : itree (D +' E) R},
invariant ctx t u -> interp_mrec ctx t ≈ interp_mrec (Handler.cat ctx (Handler.case_ ctx Handler.inr_)) u.
Proof with auto.
einit.
ecofix SELF. induction 1 as [t | A t k | A t k k'].
- destruct (case_itree t) as [ ? H | u H | A [d|e] k H ]; rewrite <- H; rewrite 2 unfold_interp_mrec; simpl.
+ eret.
+ etau.
+ etau.
+ evis.
- destruct (case_itree t) as [ ? W | u W | ? [d|e] h W ]; rewrite <- W.
+ rewrite interp_ret. rewrite 2 bind_ret_l.
apply H0.
+ rewrite interp_tau, 2 bind_tau, 2 unfold_interp_mrec. simpl.
etau.
+ rewrite interp_vis. simpl. rewrite bind_bind.
rewrite unfold_interp_mrec; simpl.
destruct (case_itree (ctx _ d)) as [ ? H1 | ? H1 | ? [d'|e] ? H1 ]; rewrite <- H1.
* rewrite 2 bind_ret_l.
rewrite bind_tau.
rewrite unfold_interp_mrec with (t := Tau _); simpl.
etau.
* rewrite 2 bind_tau.
rewrite 2 unfold_interp_mrec; simpl.
rewrite tau_euttge.
setoid_rewrite tau_euttge at 3.
etau. ebase.
* rewrite 2 bind_vis, 2 unfold_interp_mrec. simpl.
rewrite tau_euttge.
unfold Handler.cat at 2.
setoid_rewrite tau_euttge at 3.
etau. ebase. right. apply SELFL. eauto.
* rewrite 2 bind_vis, 2 unfold_interp_mrec; simpl.
rewrite tau_euttge.
setoid_rewrite tau_euttge at 3.
evis. etau. ebase.
+ rewrite interp_vis; simpl. unfold Handler.inr_ at 2, Handler.htrigger.
rewrite bind_trigger. rewrite 2 bind_vis.
rewrite 2 unfold_interp_mrec; simpl.
setoid_rewrite unfold_interp_mrec at 2; simpl.
setoid_rewrite tau_euttge at 3.
evis. etau.
- destruct (case_itree t) as [ ? W | ? W | ? [d|e] h W]; rewrite <- W.
+ rewrite 2 bind_ret_l. apply H0.
+ rewrite 2 bind_tau, 2 unfold_interp_mrec; simpl. etau.
+ rewrite 2 bind_vis, 2 unfold_interp_mrec; simpl.
unfold Handler.cat at 2. etau. ebase.
+ rewrite 2 bind_vis, 2 unfold_interp_mrec; simpl. evis. etau.
Qed.

End Interp_mrec_loop2.

Lemma interp_mrec_loop2 {D E} (ctx : D ~> itree (D +' E)) {R} {t : itree (D +' E) R}
: interp_mrec ctx t ≈ interp_mrec (Handler.cat ctx (Handler.case_ ctx inr_)) t.
Proof.
apply Interp_mrec_loop2.interp_mrec_loop2_.
constructor.
Qed.

Theorem mrec_loop2 {D E} (ctx : D ~> itree (D +' E)) {R} {d : D R}
: mrec ctx d ≈ mrec (Handler.cat ctx (Handler.case_ ctx inr_)) d.
Proof.
unfold mrec.
unfold Handler.cat at 2.
rewrite <- unfold_interp_mrec_h.
apply interp_mrec_loop2.
Qed.