Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Debug Ascend CI] only for test CI #907

Draft
wants to merge 13 commits into
base: main
Choose a base branch
from
6 changes: 4 additions & 2 deletions dipu/scripts/ci/ci_run_one_iter.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,8 +123,10 @@ def process_one_iter(log_file, clear_log, model_info: dict) -> None:
cmd_run_one_iter = f"srun --job-name={job_name} --partition={partition} --gres={gpu_requests} --time=40 python {train_path}"
cmd_cp_one_iter = ""
else:
cmd_run_one_iter = f"srun --job-name={job_name} --partition={partition} --gres={gpu_requests} --time=40 sh SMART/tools/one_iter_tool/run_one_iter.sh {train_path} {config_path} {work_dir} {opt_arg}"
cmd_cp_one_iter = f"srun --job-name={job_name} --partition={partition} --gres={gpu_requests} --time=30 sh SMART/tools/one_iter_tool/compare_one_iter.sh {package_name} {atol} {rtol} {metric}"
cmd_run_one_iter = f"bash SMART/tools/one_iter_tool/run_one_iter.sh {train_path} {config_path} {work_dir} {opt_arg}"
cmd_cp_one_iter = f"bash SMART/tools/one_iter_tool/compare_one_iter.sh {package_name} {atol} {rtol} {metric}"
# cmd_run_one_iter = f"srun --job-name={job_name} --partition={partition} --gres={gpu_requests} --time=40 bash SMART/tools/one_iter_tool/run_one_iter.sh {train_path} {config_path} {work_dir} {opt_arg}"
# cmd_cp_one_iter = f"srun --job-name={job_name} --partition={partition} --gres={gpu_requests} --time=30 bash SMART/tools/one_iter_tool/compare_one_iter.sh {package_name} {atol} {rtol} {metric}"
elif device == "ascend":
if "infer" in p2 and "infer" in p3:
cmd_run_one_iter = f"python {train_path}"
Expand Down
30 changes: 18 additions & 12 deletions dipu/scripts/ci/test_one_iter_traditional_model_list.yaml
Original file line number Diff line number Diff line change
@@ -1,18 +1,18 @@
camb:
# # transformers
- model_cfg: "transformers examples/pytorch/question-answering/run_bert_qa.py workdirs_bert"
# - model_cfg: "transformers examples/pytorch/question-answering/run_bert_qa.py workdirs_bert"

# # mmpretrain
- model_cfg: "mmpretrain resnet/resnet50_8xb32_in1k.py workdirs_resnet"
- model_cfg: "mmpretrain swin_transformer/swin-base_16xb64_in1k.py workdirs_swin_transformer"
- model_cfg: "mmpretrain vision_transformer/vit-base-p16_32xb128-mae_in1k.py workdirs_vision_transformer"
# - model_cfg: "mmpretrain swin_transformer/swin-base_16xb64_in1k.py workdirs_swin_transformer"
# - model_cfg: "mmpretrain vision_transformer/vit-base-p16_32xb128-mae_in1k.py workdirs_vision_transformer"
- model_cfg: "mmpretrain mobilenet_v2/mobilenet-v2_8xb32_in1k.py workdirs_mobilenetv2 --no-pin-memory"
precision: {atol: 0.015, metric: 0.015, rtol: 0.01}
- model_cfg: "mmpretrain mobilenet_v3/mobilenet-v3-large_8xb128_in1k.py workdirs_mobilenetv3"
- model_cfg: "mmpretrain efficientnet/efficientnet-b2_8xb32_in1k.py workdirs_efficientnet"
- model_cfg: "mmpretrain convnext/convnext-small_32xb128_in1k.py workdirs_convnext"
- model_cfg: "mmpretrain shufflenet_v2/shufflenet-v2-1x_16xb64_in1k_256.py workdirs_shufflenetv2"
precision: {atol: 0.015, metric: 0.015, rtol: 0.01}
# - model_cfg: "mmpretrain convnext/convnext-small_32xb128_in1k.py workdirs_convnext"
# - model_cfg: "mmpretrain shufflenet_v2/shufflenet-v2-1x_16xb64_in1k_256.py workdirs_shufflenetv2"
# precision: {atol: 0.015, metric: 0.015, rtol: 0.01}

# # mmdetection
- model_cfg: "mmdetection yolo/yolov3_d53_8xb8-320-273e_coco.py workdirs_yolov3"
Expand Down Expand Up @@ -97,13 +97,19 @@ cuda:
# - model_cfg: "mmagic stable_diffusion/stable-diffusion_ddim_denoisingunet_infer.py workdirs_stable_diffusion"

ascend:
# mmsegmentation
# - model_cfg: "mmsegmentation unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py workdirs_unet"
# fallback_op_list: "nll_loss2d_forward,nll_loss2d_backward,native_batch_norm,topk,convolution_overrideable,convolution_backward_overrideable,native_batch_norm_backward"
# - model_cfg: "mmdetection detr/detr_r50_8xb2-150e_coco.py workdirs_detr"
# fallback_op_list: "fill_.Scalar,baddbmm.out,where.self,linear_backward,linear,uniform_,any.all_out,_foreach_addcdiv_.ScalarList,native_batch_norm_backward,convolution_overrideable"
# mmpretrain
# - model_cfg: "mmpretrain resnet/resnet50_8xb32_in1k.py workdirs_resnet"
- model_cfg: "mmpretrain convnext/convnext-small_32xb128_in1k.py workdirs_convnext"
- model_cfg: "mmpretrain efficientnet/efficientnet-b2_8xb32_in1k.py workdirs_efficientnet"
- model_cfg: "mmpretrain mobilenet_v2/mobilenet-v2_8xb32_in1k.py workdirs_mobilenetv2"
precision: {atol: 0.015, metric: 0.015, rtol: 0.01}
- model_cfg: "mmpretrain mobilenet_v3/mobilenet-v3-large_8xb128_in1k.py workdirs_mobilenetv3"
- model_cfg: "mmpretrain resnet/resnet50_8xb32_in1k.py workdirs_resnet"
- model_cfg: "mmpretrain vision_transformer/vit-base-p16_32xb128-mae_in1k.py workdirs_vision_transformer"

# mmsegmentation
- model_cfg: "mmsegmentation deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py workdirs_deeplabv3"
- model_cfg: "mmsegmentation deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py workdirs_deeplabv3plus"
- model_cfg: "mmsegmentation unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py workdirs_unet"

kunlunxin:
# mmpretrain
Expand Down
Loading