|
1 | 1 | # llm_factory.py
|
| 2 | +import os |
2 | 3 | from typing import Optional
|
3 | 4 |
|
| 5 | +from dotenv import load_dotenv |
4 | 6 | from langchain.llms.base import BaseLanguageModel
|
5 |
| -from langchain_openai import ChatOpenAI |
| 7 | +from langchain_aws import ChatBedrockConverse, BedrockEmbeddings |
| 8 | +from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings |
| 9 | +from langchain_huggingface import ( |
| 10 | + ChatHuggingFace, |
| 11 | + HuggingFaceEndpoint, |
| 12 | + HuggingFaceEndpointEmbeddings, |
| 13 | +) |
| 14 | +from langchain_ollama import ChatOllama, OllamaEmbeddings |
| 15 | +from langchain_openai import ( |
| 16 | + AzureOpenAIEmbeddings, |
| 17 | + ChatOpenAI, |
| 18 | + AzureChatOpenAI, |
| 19 | + OpenAIEmbeddings, |
| 20 | +) |
| 21 | +from langchain_community.llms.bedrock import Bedrock |
6 | 22 |
|
| 23 | +# .env 파일 로딩 |
| 24 | +load_dotenv() |
7 | 25 |
|
8 |
| -def get_llm( |
9 |
| - model_type: str, |
10 |
| - model_name: Optional[str] = None, |
11 |
| - openai_api_key: Optional[str] = None, |
12 |
| - **kwargs, |
13 |
| -) -> BaseLanguageModel: |
| 26 | + |
| 27 | +def get_llm() -> BaseLanguageModel: |
14 | 28 | """
|
15 |
| - 주어진 model_type과 model_name 등에 따라 적절한 LLM 객체를 생성/반환한다. |
| 29 | + return chat model interface |
16 | 30 | """
|
17 |
| - if model_type == "openai": |
18 |
| - return ChatOpenAI( |
19 |
| - model=model_name, |
20 |
| - api_key=openai_api_key, |
21 |
| - **kwargs, |
| 31 | + provider = os.getenv("LLM_PROVIDER") |
| 32 | + |
| 33 | + if provider is None: |
| 34 | + raise ValueError("LLM_PROVIDER environment variable is not set.") |
| 35 | + |
| 36 | + if provider == "openai": |
| 37 | + return get_llm_openai() |
| 38 | + |
| 39 | + elif provider == "azure": |
| 40 | + return get_llm_azure() |
| 41 | + |
| 42 | + elif provider == "bedrock": |
| 43 | + return get_llm_bedrock() |
| 44 | + |
| 45 | + elif provider == "gemini": |
| 46 | + return get_llm_gemini() |
| 47 | + |
| 48 | + elif provider == "ollama": |
| 49 | + return get_llm_ollama() |
| 50 | + |
| 51 | + elif provider == "huggingface": |
| 52 | + return get_llm_huggingface() |
| 53 | + |
| 54 | + else: |
| 55 | + raise ValueError(f"Invalid LLM API Provider: {provider}") |
| 56 | + |
| 57 | + |
| 58 | +def get_llm_openai() -> BaseLanguageModel: |
| 59 | + return ChatOpenAI( |
| 60 | + model=os.getenv("OPEN_MODEL_PREF", "gpt-4o"), |
| 61 | + api_key=os.getenv("OPEN_AI_KEY"), |
| 62 | + ) |
| 63 | + |
| 64 | + |
| 65 | +def get_llm_azure() -> BaseLanguageModel: |
| 66 | + return AzureChatOpenAI( |
| 67 | + api_key=os.getenv("AZURE_OPENAI_LLM_KEY"), |
| 68 | + azure_endpoint=os.getenv("AZURE_OPENAI_LLM_ENDPOINT"), |
| 69 | + azure_deployment=os.getenv("AZURE_OPENAI_LLM_MODEL"), # Deployment name |
| 70 | + api_version=os.getenv("AZURE_OPENAI_LLM_API_VERSION", "2023-07-01-preview"), |
| 71 | + ) |
| 72 | + |
| 73 | + |
| 74 | +def get_llm_bedrock() -> BaseLanguageModel: |
| 75 | + return ChatBedrockConverse( |
| 76 | + model=os.getenv("AWS_BEDROCK_LLM_MODEL"), |
| 77 | + aws_access_key_id=os.getenv("AWS_BEDROCK_LLM_ACCESS_KEY_ID"), |
| 78 | + aws_secret_access_key=os.getenv("AWS_BEDROCK_LLM_SECRET_ACCESS_KEY"), |
| 79 | + region_name=os.getenv("AWS_BEDROCK_LLM_REGION", "us-east-1"), |
| 80 | + ) |
| 81 | + |
| 82 | + |
| 83 | +def get_llm_gemini() -> BaseLanguageModel: |
| 84 | + return ChatGoogleGenerativeAI(model=os.getenv("GEMINI_LLM_MODEL")) |
| 85 | + |
| 86 | + |
| 87 | +def get_llm_ollama() -> BaseLanguageModel: |
| 88 | + base_url = os.getenv("OLLAMA_LLM_BASE_URL") |
| 89 | + if base_url: |
| 90 | + return ChatOllama(base_url=base_url, model=os.getenv("OLLAMA_LLM_MODEL")) |
| 91 | + else: |
| 92 | + return ChatOllama(model=os.getenv("OLLAMA_LLM_MODEL")) |
| 93 | + |
| 94 | + |
| 95 | +def get_llm_huggingface() -> BaseLanguageModel: |
| 96 | + return ChatHuggingFace( |
| 97 | + llm=HuggingFaceEndpoint( |
| 98 | + model=os.getenv("HUGGING_FACE_LLM_MODEL"), |
| 99 | + repo_id=os.getenv("HUGGING_FACE_LLM_REPO_ID"), |
| 100 | + task="text-generation", |
| 101 | + endpoint_url=os.getenv("HUGGING_FACE_LLM_ENDPOINT"), |
| 102 | + huggingfacehub_api_token=os.getenv("HUGGING_FACE_LLM_API_TOKEN"), |
22 | 103 | )
|
| 104 | + ) |
| 105 | + |
| 106 | + |
| 107 | +def get_embeddings() -> Optional[BaseLanguageModel]: |
| 108 | + """ |
| 109 | + return embedding model interface |
| 110 | + """ |
| 111 | + provider = os.getenv("EMBEDDING_PROVIDER") |
| 112 | + |
| 113 | + if provider is None: |
| 114 | + raise ValueError("EMBEDDING_PROVIDER environment variable is not set.") |
| 115 | + |
| 116 | + if provider == "openai": |
| 117 | + return get_embeddings_openai() |
| 118 | + |
| 119 | + elif provider == "bedrock": |
| 120 | + return get_embeddings_bedrock() |
| 121 | + |
| 122 | + elif provider == "azure": |
| 123 | + return get_embeddings_azure() |
| 124 | + |
| 125 | + elif provider == "gemini": |
| 126 | + return get_embeddings_gemini() |
| 127 | + |
| 128 | + elif provider == "ollama": |
| 129 | + return get_embeddings_ollama() |
23 | 130 |
|
24 | 131 | else:
|
25 |
| - raise ValueError(f"지원하지 않는 model_type: {model_type}") |
| 132 | + raise ValueError(f"Invalid Embedding API Provider: {provider}") |
| 133 | + |
| 134 | + |
| 135 | +def get_embeddings_openai() -> BaseLanguageModel: |
| 136 | + return OpenAIEmbeddings( |
| 137 | + model=os.getenv("OPEN_AI_EMBEDDING_MODEL"), |
| 138 | + openai_api_key=os.getenv("OPEN_AI_EMBEDDING_KEY"), |
| 139 | + ) |
| 140 | + |
| 141 | + |
| 142 | +def get_embeddings_azure() -> BaseLanguageModel: |
| 143 | + return AzureOpenAIEmbeddings( |
| 144 | + api_key=os.getenv("AZURE_OPENAI_EMBEDDING_KEY"), |
| 145 | + azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT"), |
| 146 | + azure_deployment=os.getenv("AZURE_OPENAI_EMBEDDING_MODEL"), |
| 147 | + api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"), |
| 148 | + ) |
| 149 | + |
| 150 | + |
| 151 | +def get_embeddings_bedrock() -> BaseLanguageModel: |
| 152 | + return BedrockEmbeddings( |
| 153 | + model_id=os.getenv("AWS_BEDROCK_EMBEDDING_MODEL"), |
| 154 | + aws_access_key_id=os.getenv("AWS_BEDROCK_EMBEDDING_ACCESS_KEY_ID"), |
| 155 | + aws_secret_access_key=os.getenv("AWS_BEDROCK_EMBEDDING_SECRET_ACCESS_KEY"), |
| 156 | + region_name=os.getenv("AWS_BEDROCK_EMBEDDING_REGION", "us-east-1"), |
| 157 | + ) |
| 158 | + |
| 159 | + |
| 160 | +def get_embeddings_gemini() -> BaseLanguageModel: |
| 161 | + return GoogleGenerativeAIEmbeddings( |
| 162 | + model=os.getenv("GEMINI_EMBEDDING_MODEL"), |
| 163 | + api_key=os.getenv("GEMINI_EMBEDDING_KEY"), |
| 164 | + ) |
| 165 | + |
| 166 | + |
| 167 | +def get_embeddings_ollama() -> BaseLanguageModel: |
| 168 | + return OllamaEmbeddings( |
| 169 | + model=os.getenv("OLLAMA_EMBEDDING_MODEL"), |
| 170 | + base_url=os.getenv("OLLAMA_EMBEDDING_BASE_URL"), |
| 171 | + ) |
| 172 | + |
| 173 | + |
| 174 | +def get_embeddings_huggingface() -> BaseLanguageModel: |
| 175 | + return HuggingFaceEndpointEmbeddings( |
| 176 | + model=os.getenv("HUGGING_FACE_EMBEDDING_MODEL"), |
| 177 | + repo_id=os.getenv("HUGGING_FACE_EMBEDDING_REPO_ID"), |
| 178 | + huggingfacehub_api_token=os.getenv("HUGGING_FACE_EMBEDDING_API_TOKEN"), |
| 179 | + ) |
0 commit comments