A concrete get started for deep learning in Vthree.AI (Chinese required)
Python2.7: http://www.runoob.com/python/python-tutorial.html
Python3.6: http://www.runoob.com/python3/python3-tutorial.html
Git: http://www.runoob.com/git/git-tutorial.html
.gitignore: https://git-scm.com/docs/gitignore
unix: http://linuxcommand.org/lc3_learning_the_shell.php
Official Doc: https://mxnet.apache.org
Best Practice: https://mxnet.incubator.apache.org/faq/security.html
CheatSheet: https://github.com/anchen1011/Awesome-MXNet/blob/master/apache-mxnet-cheat.pdf
Web Tutorial: https://zh.gluon.ai/index.html
Video Tutorial: https://www.youtube.com/channel/UCjeLwTKPMlDt2segkZzw2ZQ
http://mxnet.incubator.apache.org/install/
http://mxnet.incubator.apache.org/test/tutorials/python/mnist.html
https://github.com/opringle/multivariate_time_series_forecasting
Basics: https://zh.gluon.ai/chapter_appendix/math.html
https://blog.csdn.net/u012436149/article/details/78047278
NLP-toolbox: http://gluon-nlp.mxnet.io
NLP-tutorial: https://zh.gluon.ai/chapter_natural-language-processing/index.html
CV-toolbox: https://gluon-cv.mxnet.io
NLP-toolbox: https://zh.gluon.ai/chapter_computer-vision/index.html
CNN: https://zh.gluon.ai/chapter_computer-vision/bounding-box.html
LSTM: https://zh.gluon.ai/chapter_recurrent-neural-networks/lstm.html
Clear execution flow (example: https://github.com/opringle/multivariate_time_series_forecasting)
Clear handler, where input format is clearly defined. Should be runnable with:
>>> from inference_module import handler
>>> handler(input, context=None)
Document all dependencies with version information (example: mxnet==0.12.3)
Document the environment information including machine image/AMI information