A bridging framework that integrates the Knowledge Organization Infrastructure (KOI) with the Model Context Protocol (MCP), enabling autonomous agents to exchange rich personality traits and expose capabilities as standardized tools.
# Clone the repository
git clone https://github.com/block-science/koi-mcp.git
cd koi-mcp
# Create and activate virtual environment
uv venv --python 3.12
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install the package with development dependencies
uv pip install -e ".[dev]"
The quickest way to see KOI-MCP in action is to run the demo:
python scripts/demo.py
This provides a rich interactive console with detailed event logging and component status displays.
Alternatively, you can run a simplified demo using the main module:
# Run demo (starts coordinator and two example agents)
python -m koi_mcp.main demo
This starts a coordinator node and two agent nodes with different personality traits. You can then visit:
- Coordinator Registry: http://localhost:9000/resources/list
- Helpful Agent Tools: http://localhost:8101/tools/list
- Creative Agent Tools: http://localhost:8102/tools/list
You can also run the components separately:
# Run coordinator node
python -m koi_mcp.main coordinator
# Run agent nodes
python -m koi_mcp.main agent --config configs/agent1.json
python -m koi_mcp.main agent --config configs/agent2.json
The KOI-MCP integration follows a Coordinator-Adapter pattern:
flowchart TD
subgraph "Coordinator-Adapter Node"
CN[KOI Coordinator Node]
AD[MCP Adapter]
MC[MCP Context Registry]
end
subgraph "Agent Node A"
A1[KOI Agent Node]
A2[Personality Bundle]
A3[MCP Server]
end
subgraph "Agent Node B"
B1[KOI Agent Node]
B2[Personality Bundle]
B3[MCP Server]
end
CN <-->|Node Discovery| A1
CN <-->|Node Discovery| B1
A1 -->|Personality Broadcast| CN
B1 -->|Personality Broadcast| CN
CN --> AD
AD --> MC
MC -->|Agent Registry| C[LLM Clients]
A3 -->|Tools/Resources| C
B3 -->|Tools/Resources| C
- KOI Coordinator Node: Acts as a central hub for the KOI network, handling agent discovery and state synchronization
- MCP Adapter: Converts KOI personality bundles into MCP-compatible resources and tools
- Agent Nodes: Individual agents with personalities that broadcast their traits to the network
- MCP Registry Server: Exposes the adapter's registry as MCP-compatible endpoints
- MCP Agent Servers: Individual servers for each agent that expose their specific traits as endpoints
Agents express their capabilities through a trait-based personality model:
# Example agent configuration
{
"agent": {
"name": "helpful-agent",
"version": "1.0",
"traits": {
"mood": "helpful",
"style": "concise",
"interests": ["ai", "knowledge-graphs"],
"calculate": {
"description": "Performs simple calculations",
"is_callable": true
}
}
}
}
Each trait can be:
- A simple value (string, number, boolean, list)
- A complex object with metadata (description, type, is_callable)
- A callable tool that can be invoked by LLM clients
The system extends KOI's Resource Identifier (RID) system with a dedicated AgentPersonality
type:
class AgentPersonality(ORN):
namespace = "agent.personality"
def __init__(self, name, version):
self.name = name
self.version = version
@property
def reference(self):
return f"{self.name}/{self.version}"
Agent personalities are structured using Pydantic models:
class PersonalityProfile(BaseModel):
rid: AgentPersonality
node_rid: KoiNetNode
base_url: Optional[str] = None
mcp_url: Optional[str] = None
traits: List[PersonalityTrait] = Field(default_factory=list)
The system integrates with KOI's knowledge processing pipeline through specialized handlers:
@processor.register_handler(HandlerType.Bundle, rid_types=[AgentPersonality])
def personality_bundle_handler(proc: ProcessorInterface, kobj: KnowledgeObject):
"""Process agent personality bundles."""
try:
# Validate contents as PersonalityProfile
profile = PersonalityProfile.model_validate(kobj.contents)
# Register with MCP adapter if available
if mcp_adapter is not None:
mcp_adapter.register_agent(profile)
return kobj
except ValidationError:
return STOP_CHAIN
The integration provides MCP-compatible REST endpoints:
GET /resources/list
: List all known agent resourcesGET /resources/read/{resource_id}
: Get details for a specific agentGET /tools/list
: List all available agent tools
GET /resources/list
: List this agent's personality as a resourceGET /resources/read/agent:{name}
: Get this agent's personality detailsGET /tools/list
: List this agent's callable traits as toolsPOST /tools/call/{trait_name}
: Call a specific trait as a tool
{
"coordinator": {
"name": "koi-mcp-coordinator",
"base_url": "http://localhost:9000/koi-net",
"mcp_registry_port": 9000
}
}
{
"agent": {
"name": "helpful-agent",
"version": "1.0",
"base_url": "http://localhost:8100/koi-net",
"mcp_port": 8101,
"traits": {
"mood": "helpful",
"style": "concise",
"interests": ["ai", "knowledge-graphs"],
"calculate": {
"description": "Performs simple calculations",
"is_callable": true
}
}
},
"network": {
"first_contact": "http://localhost:9000/koi-net"
}
}
Agents can update their traits dynamically:
agent = KoiAgentNode(...)
agent.update_traits({
"mood": "enthusiastic",
"new_capability": {
"description": "A new capability added at runtime",
"is_callable": True
}
})
You can register custom handlers for personality processing:
@processor.register_handler(HandlerType.Network, rid_types=[AgentPersonality])
def my_custom_network_handler(proc: ProcessorInterface, kobj: KnowledgeObject):
# Custom logic for determining which nodes should receive personality updates
# ...
return kobj
# Run all tests
pytest
# Run tests with coverage report
pytest --cov=koi_mcp
koi-mcp/
├── configs/ # Configuration files for nodes
├── docs/ # Documentation and design specs
├── scripts/ # Utility scripts
├── src/ # Source code
│ └── koi_mcp/
│ ├── koi/ # KOI integration components
│ │ ├── handlers/ # Knowledge processing handlers
│ │ └── node/ # Node implementations
│ ├── personality/ # Personality models
│ │ ├── models/ # Data models for traits and profiles
│ │ └── rid.py # Agent personality RID definition
│ ├── server/ # MCP server implementations
│ │ ├── adapter/ # KOI-to-MCP adapter
│ │ ├── agent/ # Agent server
│ │ └── registry/ # Registry server
│ ├── utils/ # Utility functions
│ ├── config.py # Configuration handling
│ └── main.py # Main entry point
└── tests/ # Test suite
This project is licensed under the MIT License - see the LICENSE file for details.
- Built on the KOI-Net library for distributed knowledge organization
- Compatible with the emerging Model Context Protocol (MCP) standard for LLM tool integration