Skip to content

Commit

Permalink
[FIX] tests + bump version
Browse files Browse the repository at this point in the history
  • Loading branch information
jcapels committed Jan 15, 2025
1 parent 4c0c245 commit 9d5e6ab
Show file tree
Hide file tree
Showing 4 changed files with 14 additions and 14 deletions.
2 changes: 1 addition & 1 deletion setup.cfg
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[metadata]
name = deepmol
version = 1.1.9
version = 1.1.10
description = DeepMol: a python-based machine and deep learning framework for drug discovery
keywords = machine-learning, deep-learning, cheminformatics, drug-discovery
author = DeepMol Team
Expand Down
2 changes: 1 addition & 1 deletion src/deepmol/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@

__version__ = '1.1.9'
__version__ = '1.1.10'
12 changes: 12 additions & 0 deletions tests/integration_tests/dataset/test_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,3 +23,15 @@ def setUp(self):
labels_fields=['Class'])

self.small_dataset_to_test_with_invalid = loader.create_dataset(sep=",")

multilabel_classification_df = os.path.join(TEST_DIR, 'data', "multilabel_classification_dataset.csv")
loader = CSVLoader(dataset_path=multilabel_classification_df,
smiles_field='smiles',
id_field='ids',
labels_fields=['C00341', 'C01789', 'C00078', 'C00049', 'C00183', 'C03506', 'C00187',
'C00079', 'C00047', 'C01852', 'C00407', 'C00129', 'C00235', 'C00062',
'C00353', 'C00148', 'C00073', 'C00108', 'C00123', 'C00135', 'C00448',
'C00082', 'C00041'],
mode='auto')
# create the dataset
self.multilabel_classification = loader.create_dataset(sep=',', header=0, nrows=100)
12 changes: 0 additions & 12 deletions tests/integration_tests/dataset/test_dataset_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,18 +59,6 @@ def model_build_regression(): # num = number of categories

class TestDatasetModels(TestDataset):

def setUp(self):
multilabel_classification_df = os.path.join(TEST_DIR, 'data', "multilabel_classification_dataset.csv")
loader = CSVLoader(dataset_path=multilabel_classification_df,
smiles_field='smiles',
id_field='ids',
labels_fields=['C00341', 'C01789', 'C00078', 'C00049', 'C00183', 'C03506', 'C00187',
'C00079', 'C00047', 'C01852', 'C00407', 'C00129', 'C00235', 'C00062',
'C00353', 'C00148', 'C00073', 'C00108', 'C00123', 'C00135', 'C00448',
'C00082', 'C00041'],
mode='auto')
# create the dataset
self.multilabel_classification = loader.create_dataset(sep=',', header=0, nrows=100)

def _test_model(self, model):
model.fit(self.small_dataset_to_test_with_invalid)
Expand Down

0 comments on commit 9d5e6ab

Please sign in to comment.