Skip to content

Use FFT algorithm for faster polynomial multiplication #46

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: dev
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
243 changes: 243 additions & 0 deletions src/numerical/fft.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
use std::ops::Range;

use num_complex::Complex64 as C64;

/// Get the smallest power of two larger than or equal to n, and the log base two
/// of that number.
const fn next_power(mut n: usize) -> (usize, usize) {
let power_of_two = n.is_power_of_two();
let mut count = 0;

while n > 0 {
n >>= 1;
count += 1;
}

if power_of_two {
count -= 1;
}

(1 << count, count)
}

/// Flip the bits of a number for the FFT algorithm until the logn'th bit.
const fn reverse_bits_around(num: usize, logn: usize) -> usize {
if logn > 0 {
(num << (usize::BITS as usize - logn)).reverse_bits()
} else {
0
}
}

fn bit_reverse_copy<T>(source: &Vec<T>, target_length: Option<usize>) -> (Vec<C64>, usize, usize)
where
T: Into<C64> + Copy,
{
let len = usize::max(source.len(), target_length.unwrap_or(0));
let (power, logn) = next_power(len);

let mut res = vec![(0.).into(); power];

for (i, val) in source.iter().enumerate() {
res[reverse_bits_around(i, logn)] = (*val).into();
}

(res, power, logn)
}

/// Perform the Cooley Tukey variant of the Fast Fourier Transformation in place.
/// If `target_length > values.len()`, make the returned array of at least length
/// `target_length`,
pub fn fft(values: &Vec<f64>, target_length: Option<usize>) -> Vec<C64> {
let (mut res, power, logn) = bit_reverse_copy(values, target_length);

for s in 1..=logn {
let m = 1 << s;
let m_div_2 = m >> 1;

let ωm = C64::from_polar(1., -std::f64::consts::TAU / (m as f64));

for k in (0..power).step_by(m) {
let mut ω = C64::new(1., 0.);

for j in 0..m_div_2 {
let t = ω * res[k + j + m_div_2];
let u = res[k + j];

res[k + j] = u + t;
res[k + j + m_div_2] = u - t;

ω *= ωm;
}
}
}

res
}

/// Perform the Cooley Tukey variant of the inverse Fast Fourier Transformation
/// in place.
pub fn inverse_fft(values: &Vec<C64>) -> Vec<f64> {
let (mut res, power, logn) = bit_reverse_copy(values, None);

for s in 1..=logn {
let m = 1 << s;
let m_div_2 = m >> 1;

let ωm = C64::from_polar(1., std::f64::consts::TAU / (m as f64));

for k in (0..power).step_by(m) {
let mut ω = C64::new(1., 0.);

for j in 0..m_div_2 {
let t = ω * res[k + j + m_div_2];
let u = res[k + j];

res[k + j] = u + t;
res[k + j + m_div_2] = u - t;

ω *= ωm;
}
}
}

res.into_iter().map(|x| x.norm() / (power as f64)).collect()
}

#[cfg(test)]
mod fft_tests {
use super::*;
use crate::structure::complex::C64;
use float_cmp::approx_eq;

#[test]
fn test_next_power() {
let vals = vec![1, 2, 4, 3, 9, 1023, 11, 0];
let powers = vec![1, 2, 4, 4, 16, 1024, 16, 1];

for (val, power) in vals.into_iter().zip(powers) {
let (np, log) = next_power(val);

assert_eq!(np, power);
assert_eq!(1 << log, np);
}
}

#[test]
// Test if the values are permuted correctly
fn test_bitwise_copy() {
let vals = vec![1., 2., 3., 4.];

// This should be the resulting permutation
let target = vec![
C64::new(1., 0.),
C64::new(3., 0.),
C64::new(2., 0.),
C64::new(4., 0.),
];

let (swapped, power, logn) = bit_reverse_copy(&vals, None);

assert_eq!(swapped.len(), vals.len());
assert_eq!(swapped.len(), power);
assert_eq!(1 << logn, power);

// Assert the swapped vec and what it is supposed to be is the same are the same
for (swapped, goal) in swapped.into_iter().zip(target.into_iter()) {
assert_eq!(swapped, goal);
}
}

#[test]
// Test if the bitwise copy extends an array properly before copying the values.
fn test_bitwise_copy_with_extend() {
let vals = vec![1., 2., 3.];

let target = vec![
C64::new(1., 0.),
C64::new(0., 0.),
C64::new(3., 0.),
C64::new(0., 0.),
C64::new(2., 0.),
C64::new(0., 0.),
C64::new(0., 0.),
C64::new(0., 0.),
];

let (swapped, power, logn) = bit_reverse_copy(&vals, Some(8));

assert_eq!(swapped.len(), 8);
assert_eq!(swapped.len(), power);
assert_eq!(1 << logn, power);

for (swapped, goal) in swapped.into_iter().zip(target.into_iter()) {
assert_eq!(swapped, goal);
}
}

#[test]
fn test_simple_fft() {
// The Discrete Fourier Transform of f(x)=1 is just one.
let coeff1 = vec![1.];

let transformed = fft(&coeff1, None);

let transformed_target = vec![C64::new(1., 0.)];

for (val1, val2) in transformed.into_iter().zip(transformed_target) {
assert!(approx_eq!(f64, (val1 - val2).norm(), 0.));
}
}

#[test]
fn test_simple_fft_and_inverse() {
let coeffs = vec![0., 1., 0.];

let transformed = fft(&coeffs, None);

// The resulting DFT should have length 4 because it is
// the smallest larger power of two.
let transformed_target = vec![
C64::new(1., 0.),
C64::new(0., -1.),
C64::new(-1., 0.),
C64::new(0., 1.),
];

for (val1, val2) in transformed.iter().zip(transformed_target) {
assert!(approx_eq!(f64, (val1 - val2).norm(), 0.));
}

let coeffs_recovered = inverse_fft(&transformed);

for (x, y) in coeffs.into_iter().zip(coeffs_recovered.into_iter()) {
assert!(approx_eq!(f64, x, y))
}
}

#[test]
fn test_complex_fft() {
// These coefficients represent a polynomial with the fourth root of
// unity (and all its powers except for 1.0) as one of its roots
let coeffs = vec![1., 1., 1., 1.];

let transformed = fft(&coeffs, None);

let transformed_target = vec![
C64::new(4., 0.),
C64::new(0., 0.),
C64::new(0., 0.),
C64::new(0., 0.),
];

for (val1, val2) in transformed.iter().zip(transformed_target) {
assert!(approx_eq!(f64, (val1 - val2).norm(), 0.));
}

let coeffs_recovered = inverse_fft(&transformed);

for (x, y) in coeffs.into_iter().zip(coeffs_recovered.into_iter()) {
assert!(approx_eq!(f64, x, y))
}
}
}
1 change: 1 addition & 0 deletions src/numerical/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
//pub mod bdf;
//pub mod gauss_legendre;
pub mod eigen;
pub mod fft;
pub mod integral;
pub mod interp;
pub mod newton;
Expand Down
2 changes: 1 addition & 1 deletion src/structure/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,8 @@
//! * DataFrame
//! * Multinomial (not yet implemented)

//pub mod complex;
pub mod ad;
pub mod complex;
pub mod dataframe;
pub mod matrix;
pub mod multinomial;
Expand Down
Loading